I have a problem finding a strongly connected component of size exactly K in a Tournament Graph. Can someone help me?

Thanks in advance

Thanks in advance

# | User | Rating |
---|---|---|

1 | tourist | 3539 |

2 | V--o_o--V | 3338 |

3 | Um_nik | 3307 |

4 | Petr | 3297 |

5 | ecnerwala | 3282 |

6 | LHiC | 3266 |

7 | wxhtxdy | 3264 |

8 | Radewoosh | 3257 |

9 | Vn_nV | 3182 |

10 | dotorya | 3178 |

# | User | Contrib. |
---|---|---|

1 | Radewoosh | 207 |

2 | Errichto | 177 |

3 | neal | 159 |

4 | Ashishgup | 158 |

5 | PikMike | 157 |

6 | majk | 156 |

6 | Petr | 156 |

8 | rng_58 | 155 |

9 | Um_nik | 154 |

10 | 300iq | 153 |

I have a problem finding a strongly connected component of size exactly K in a Tournament Graph. Can someone help me?

Thanks in advance

Thanks in advance

↑

↓

Codeforces (c) Copyright 2010-2018 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Jan/24/2019 12:50:51 (d3).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|

Thanks for your attention.

Sorry, it seems that the left side of the page is cut off for me, and therefore I cannot really read what the proof is about.

From what I gathered from the page and googled about, if a tournament of size N is strongly connected, then it is vertex pan-cyclic, which means that every vertex in G is part of a cycle of length K for 3<=K<=N. And this proof is done using induction.

However, as the page is cut off, I cannot really read it, and I think I don't really understand what I read too XD. Is it okay for you to explain it here? Is the proof and algorithm similar to the proof and algorithm for finding a hamiltonian path in a tournament? I tried to adapt that algorithm and it seems that I got into some counterexamples.

Hello,

i have implemented code for the problem http://www.spoj.pl/problems/CYCLERUN/ and the complexity is O(N2),but getting TLE. Any idea what is the best complexity for this problem