hi, i think all of divisors of n(1 to 10^18) with in 9 sec is quit immpossible. if any idea or solution.please share it :) thank you

# | User | Rating |
---|---|---|

1 | tourist | 3434 |

2 | fateice | 3337 |

3 | Um_nik | 3292 |

4 | OO0OOO00O0OOO0O0…O | 3280 |

5 | Syloviaely | 3274 |

6 | Petr | 3223 |

7 | Swistakk | 3105 |

8 | mnbvmar | 3096 |

9 | yosupo | 3091 |

10 | dotorya | 3081 |

# | User | Contrib. |
---|---|---|

1 | rng_58 | 164 |

2 | tourist | 162 |

3 | csacademy | 153 |

4 | Petr | 150 |

5 | Swistakk | 148 |

6 | Um_nik | 144 |

7 | Nickolas | 142 |

7 | Vovuh | 142 |

9 | BledDest | 138 |

9 | PikMike | 138 |

9 | matthew99 | 138 |

9 | Errichto | 138 |

hi, i think all of divisors of n(1 to 10^18) with in 9 sec is quit immpossible. if any idea or solution.please share it :) thank you

↑

↓

Codeforces (c) Copyright 2010-2018 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Jul/19/2018 12:38:52 (d3).

Desktop version, switch to mobile version.

User lists

Name |
---|

Iterating from 1 to sqrt(n) and using divisor pairs will give you the answer. In 9 secs, I think you can do 10^9 operations, even with the constant of the modulo operation.

Good day to you,

well firstly you can start with "Pollard Rho" (you will also need something like miller-rabin), which could factorize the number in O(N^(1/4)) [it is somehow long coding with many possible mistakes, but the core is not that bad].

As you have it, you can generate all divisors by "simple recursion" in O(#NUMBER_OF_DIVISORS)

Hope I guessed rightly what you asked for ^_^

Good Luck & Have nice day!!

thanks i got it...yeah there have some mistake.. for large number it's quite impossible there is no exact solution for this ques with 9 sec :) thank you :)

Well imho there is something more exact, but this is a lesser pain ^_^

Also the probability is "soo big" you can treat is as exact :)

Have nice day ^_^