Paimon Sorting

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

Paimon just invents a new sorting algorithm which looks much like *bubble sort*, with a few differences. It accepts a 1-indexed sequence A of length n and sorts it. Its pseudo-code is shown below.

Algorithm 1 The Sorting Alg	orithm
1: function $SORT(A)$	
2: for $i \leftarrow 1$ to n do	$\triangleright n$ is the number of elements in A
3: for $j \leftarrow 1$ to n do	
4: if $a_i < a_j$ then	$\triangleright a_i$ is the <i>i</i> -th element in A
5: Swap a_i and a_i	a_j
6: end if	
7: end for	
8: end for	
9: end function	

If you don't believe this piece of algorithm can sort a sequence it will also be your task to prove it. Anyway here comes the question:

Given an integer sequence $A = a_1, a_2, \dots, a_n$ of length n, for each of its prefix A_k of length k (that is, for each $1 \le k \le n$, consider the subsequence $A_k = a_1, a_2, \dots, a_k$), count the number of swaps performed if we call SORT (A_k) .

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer $n \ (1 \le n \le 10^5)$ indicating the length of the sequence.

The second line contains n integers a_1, a_2, \dots, a_n $(1 \le a_i \le n)$ indicating the given sequence.

It's guaranteed that the sum of n of all test cases will not exceed 10^6 .

Output

For each test case output one line containing n integers s_1, s_2, \dots, s_n separated by a space, where s_i is the number of swaps performed if we call $SORT(A_i)$.

Please, DO NOT output extra spaces at the end of each line or your solution may be considered incorrect!

Example

standard input	standard output
3	02357
5	024
2 3 2 1 5	0
3	
1 2 3	
1	
1	