Problem A. Harder Satisfiability

Time limit: 2 seconds

A fully quantified boolean 2-CNF formula is a formula in the following form: $Q_1x_1 \ldots Q_nx_n F(x_1, \ldots, x_n)$. Each Q_i is one of two quantifiers: a universal quantifier \forall ("for all"), or an existential quantifier \exists ("exists"); and F is a conjunction (boolean AND) of m clauses $s \lor t$ (boolean OR), where s and t are some variables (not necessarily different) with or without negation. This formula has no free variables, so it evaluates to either true or false. We can evaluate a given fully quantified formula with a simple recursive algorithm:

- 1. If there are no quantifiers, return the remaining expression's value of true or false.
- 2. Otherwise, recursively evaluate formulas: $F_z = Q_2 x_2 \dots Q_n x_n F(z, x_2, \dots, x_n)$ for z = 0, 1.
- 3. If $Q_1 = \exists$ return $F_0 \lor F_1$; otherwise if $Q_1 = \forall$ return $F_0 \land F_1$.

You are given some fully quantified boolean 2-CNF formulas. Find out if they are true or not.

Input

The first line of the input contains a single integer t $(1 \le t \le 10^5)$ — the number of test cases.

The first line of a test case contains two integers n and m $(1 \le n, m \le 10^5)$ — the number of variables and the number of clauses in F. The next line contains a string s with n characters describing the quantifiers. If $s_i = \mathbf{A}$ then Q_i is a universal quantifier \forall , otherwise if $s_i = \mathbf{E}$ then s_i is an existential quantifier \exists .

Next *m* lines describe clauses in *F*. Each line contains two integers u_i and v_i $(-n \le u_i, v_i \le n; u_i, v_i \ne 0)$. If $u_i \ge 1$ then the first variable in the *i*-th clause is x_{u_i} . Otherwise, if $u_i \le -1$ then the first variable is $\overline{x_{-u_i}}$ (negation of x_{-u_i}). The second variable in the *i*-th clause is similarly described by v_i .

The sum of values of n for all test cases does not exceed 10^5 ; the sum of values of m does not exceed 10^5 .

Output

For each test case output "TRUE" if the given formula is true or "FALSE" otherwise.

Example

standard input	standard output
3	TRUE
2 2	FALSE
AE	FALSE
1 -2	
-1 2	
2 2	
EA	
1 -2	
-1 2	
3 2	
AEA	
1 -2	
-1 -3	

Note

The first sample corresponds to a formula $\forall x_1 \exists x_2 (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2) = \forall x_1 \exists x_2 x_1 \oplus x_2$. For any x_1 we can choose $x_2 = \overline{x_1}$ making it true, hence the formula is true.

The second sample changes the order of quantifiers. Now the answer is "FALSE", because for any value of x_1 we can choose $x_2 = x_1$ and the formula becomes false.

The third formula is $\forall x_1 \exists x_2 \forall x_3 (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_3})$. If we substitute $x_1 = 1, x_3 = 1$ then no assignment of x_2 can make the second clause true, so the formula is false.