Problem A. Harder Satisfiability

Time limit: 2 seconds

A fully quantified boolean 2-CNF formula is a formula in the following form: $Q_{1} x_{1} \ldots Q_{n} x_{n} F\left(x_{1}, \ldots, x_{n}\right)$. Each Q_{i} is one of two quantifiers: a universal quantifier \forall ("for all"), or an existential quantifier \exists ("exists"); and F is a conjunction (boolean AND) of m clauses $s \vee t$ (boolean OR), where s and t are some variables (not necessarily different) with or without negation. This formula has no free variables, so it evaluates to either true or false. We can evaluate a given fully quantified formula with a simple recursive algorithm:

1. If there are no quantifiers, return the remaining expression's value of true or false.
2. Otherwise, recursively evaluate formulas: $F_{z}=Q_{2} x_{2} \ldots Q_{n} x_{n} F\left(z, x_{2}, \ldots, x_{n}\right)$ for $z=0,1$.
3. If $Q_{1}=\exists$ return $F_{0} \vee F_{1}$; otherwise if $Q_{1}=\forall$ return $F_{0} \wedge F_{1}$.

You are given some fully quantified boolean 2-CNF formulas. Find out if they are true or not.

Input

The first line of the input contains a single integer $t\left(1 \leq t \leq 10^{5}\right)$ - the number of test cases.
The first line of a test case contains two integers n and $m\left(1 \leq n, m \leq 10^{5}\right)$ - the number of variables and the number of clauses in F. The next line contains a string s with n characters describing the quantifiers. If $s_{i}=$ 'A' then Q_{i} is a universal quantifier \forall, otherwise if $s_{i}=$ ' E ' then s_{i} is an existential quantifier \exists.
Next m lines describe clauses in F. Each line contains two integers u_{i} and $v_{i}\left(-n \leq u_{i}, v_{i} \leq n ; u_{i}, v_{i} \neq 0\right)$. If $u_{i} \geq 1$ then the first variable in the i-th clause is $x_{u_{i}}$. Otherwise, if $u_{i} \leq-1$ then the first variable is $\overline{x_{-u_{i}}}$ (negation of $x_{-u_{i}}$). The second variable in the i-th clause is similarly described by v_{i}.
The sum of values of n for all test cases does not exceed 10^{5}; the sum of values of m does not exceed 10^{5}.

Output

For each test case output "TRUE" if the given formula is true or "FALSE" otherwise.

Example

standard input	
3	TRUE
22	Ftandard output
AE	FALSE
$1-2$	
-12	FALSE
22	
EA	
$1-2$	
-12	
32	
AEA	
$1-2$	
$-1-3$	

Note

The first sample corresponds to a formula $\forall x_{1} \exists x_{2}\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right)=\forall x_{1} \exists x_{2} x_{1} \oplus x_{2}$. For any x_{1} we can choose $x_{2}=\overline{x_{1}}$ making it true, hence the formula is true.

The second sample changes the order of quantifiers. Now the answer is "FALSE", because for any value of x_{1} we can choose $x_{2}=x_{1}$ and the formula becomes false.

The third formula is $\forall x_{1} \exists x_{2} \forall x_{3}\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right)$. If we substitute $x_{1}=1, x_{3}=1$ then no assignment of x_{2} can make the second clause true, so the formula is false.

