Problem A. Linearization

Input file:
Output file:
Time limit:
Memory limit:

standard input
standard output
2 seconds
512 megabytes

Bitwise "and" of two non-negative integers is calculated as follows: write both numbers in binary, then the i-th binary digit of the result is equal to 1 if both arguments have the i-th digit equal to 1 . For example, $(14$ and 7$)=\left(1110_{2}\right.$ and $\left.0111_{2}\right)=110_{2}=6$.
"Exclusive or" (xor) of two binary digits equals 1 if they are unequal, and 0 if they are equal. Thus, 0 xor $0=0,0$ xor $1=1,1$ xor $0=1$ and 1 xor $1=0$.
Parity function $P(x)$ for a non-negative integer x equals 1 if the binary notation of x has odd number of ones, and 0 if the binary notation of x has even number of ones. For example, $P(5)=P\left(101_{2}\right)=0$, $P(7)=P\left(111_{2}\right)=1$.
Consider a binary string whose length is a power of two: $s=s_{0} s_{1} \ldots s_{n-1}$, where $n=2^{k}$. We will call this string linear, if there is an integer $x, 0 \leq x<n$, and a binary digit b, such that for all i from 0 to $n-1$ holds $s_{i}=P(i$ and $x)$ xor b.
For example, a string " 1100 " is linear: take $x=2=10_{2}$ and $b=1$.

- $s_{0}=P(0$ and 2$)$ xor $1=P(0)$ xor $1=0$ xor $1=1$
- $s_{1}=P(1$ and 2$)$ xor $1=P(0)$ xor $1=0$ xor $1=1$
- $s_{2}=P(2$ and 2$)$ xor $1=P(2)$ xor $1=1$ xor $1=0$
- $s_{3}=P(3$ and 2$)$ xor $1=P(2)$ xor $1=1$ xor $1=0$

Meanwhile, "0001" is not linear: whatever x we chose, we would have $P(0$ and $x)=P(0)=0$, therefore $b=0$. We have $0=P(1$ and $x)$ and $0=P(2$ and $x)$, therefore $x=0$. But $P(3$ and 0$)=0 \neq s_{3}=1$.
Consider a binary string. In one action you can take a continuous segment of digits and invert them: change all zeros to ones and vice versa. Call hardness of linearization of this string the minimal number of actions one needs to make it linear.
For example, the hardness of linearization for the string "0001" is 1 : you can invert the left three digits to get the string " 1111 " which is linear with $x=0, b=1$. There are other ways to linearize it in one action.
You are given a string t and q queries $\left(l_{i}, r_{i}\right)$. For each query, consider a substring of t from l_{i}-th digit to r_{i}-th digit, inclusive. Digits of t are numbered from left to right, starting with 0 . It is guaranteed that the length of each query is a power of two. Calculate the hardness of linearization for every given substring.

Input

The first line of input contains a single integer m - the length of the string $t(1 \leq m \leq 200000)$. The second line contains a binary string t of length m.
The next line contains integer q - the number of queries ($1 \leq q \leq 200000$). Each of the next q lines contains two integers, l_{i} and $r_{i}\left(0 \leq l_{i} \leq r_{i}<m, r_{i}-l_{i}+1 \geq 2\right.$, substring length is a power of two).

Output

For each query, print one integer: the hardness of linearization of the corresponding substring of t.

Example

$\left.\begin{array}{|l|l|l|}\hline & \text { standard input } & \\ \hline 8 & 2 & \text { standard output } \\ 00000101 & 1 & \\ 3 & 0 & 0\end{array}\right]$

Note

In the first query we need to linearize the whole string. This can be done, for example, by inverting the segment from 4 -th to 6 -th digit, getting the string "00001011", and then inverting the 5 -th digit, getting "00001111" which is linear with $x=4$ and $b=0$.
In the second query, the string " 0001 " can be linearized in one action, as described in the problem statement.

In the third query the string " 0000 " is already linear with $x=0, b=0$.

