Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

No tag edit access

The problem statement has recently been changed. View the changes.

×
A. Three Friends

time limit per test

1 secondmemory limit per test

256 megabytesinput

standard inputoutput

standard outputThree friends are going to meet each other. Initially, the first friend stays at the position $$$x = a$$$, the second friend stays at the position $$$x = b$$$ and the third friend stays at the position $$$x = c$$$ on the coordinate axis $$$Ox$$$.

In one minute each friend independently from other friends can change the position $$$x$$$ by $$$1$$$ to the left or by $$$1$$$ to the right (i.e. set $$$x := x - 1$$$ or $$$x := x + 1$$$) or even don't change it.

Let's introduce the total pairwise distance — the sum of distances between each pair of friends. Let $$$a'$$$, $$$b'$$$ and $$$c'$$$ be the final positions of the first, the second and the third friend, correspondingly. Then the total pairwise distance is $$$|a' - b'| + |a' - c'| + |b' - c'|$$$, where $$$|x|$$$ is the absolute value of $$$x$$$.

Friends are interested in the minimum total pairwise distance they can reach if they will move optimally. Each friend will move no more than once. So, more formally, they want to know the minimum total pairwise distance they can reach after one minute.

You have to answer $$$q$$$ independent test cases.

Input

The first line of the input contains one integer $$$q$$$ ($$$1 \le q \le 1000$$$) — the number of test cases.

The next $$$q$$$ lines describe test cases. The $$$i$$$-th test case is given as three integers $$$a, b$$$ and $$$c$$$ ($$$1 \le a, b, c \le 10^9$$$) — initial positions of the first, second and third friend correspondingly. The positions of friends can be equal.

Output

For each test case print the answer on it — the minimum total pairwise distance (the minimum sum of distances between each pair of friends) if friends change their positions optimally. Each friend will move no more than once. So, more formally, you have to find the minimum total pairwise distance they can reach after one minute.

Example

Input

8 3 3 4 10 20 30 5 5 5 2 4 3 1 1000000000 1000000000 1 1000000000 999999999 3 2 5 3 2 6

Output

0 36 0 0 1999999994 1999999994 2 4

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Jan/22/2021 03:08:33 (f1).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|