Draw Polygon Lines

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

This is an interactive problem.

You are given n points $A_i = (x_i, y_i)$ on the plane. It is known that all x_i are distinct and all y_i are distinct. Your task is to draw polygonal lines connecting these n points.

A polygonal line is defined by a permutation p_1, p_2, \ldots, p_n of numbers from 1 to n. The polygonal line consists of n-1 segments, the first segment connects points A_{p_1} and A_{p_2} , the second segment connects points A_{p_2} and A_{p_3}, \ldots , the last segment connects points $A_{p_{n-1}}$ and A_{p_n} . Note that segments may intersect. The *sharpness* of a polygonal line is defined as the number of indices $2 \le i \le n-1$ such that the angle $\angle A_{p_{i-1}}A_{p_i}A_{p_{i+1}}$ is acute, i.e., strictly less than 90°.

You need to solve four tasks:

- 1. Find any polygonal line that has the maximum possible sharpness.
- 2. Given an integer c. Find any polygonal line whose sharpness is $\leq c$.
- 3. Given an integer c.

Answer q queries, each specified by a single integer k_i ($c \le k_i \le n - c$). In the *i*-th query, you need to construct a polygonal line that has sharpness exactly k_i .

4. Given an integer c.

For each k from c to n - c, construct a polygonal line $p^{(k)}$ with sharpness exactly k. Provide n - 2c + 1 numbers hash $(p^{(c)})$, hash $(p^{(c+1)}), \ldots$, hash $(p^{(n-c)})$ as the answer, where $hash(p) = \left(\sum_{i=1}^{n} p_i b^{i-1}\right) \mod m$ is the polynomial hash of permutation p with parameters $b = 10^6 + 3$ and $m = 10^9 + 7$.

Then answer q queries, each specified by a single integer k_i $(c \le k_i \le n - c)$. In the *i*-th query, you need to provide the polygonal line $p^{(k_i)}$. It will be checked that the sharpness of this polygonal line is exactly k_i and its hash matches the previously provided value hash $(p^{(k_i)})$.

Note that queries will appear after receiving the hashes.

It is guaranteed, that under given constraints, the answers always exist.

Interaction Protocol

The first line contains two integers task, group $(1 \le \text{task} \le 4, 0 \le \text{group} \le 21)$ — the number of the task to be solved in this test and the test group number.

The second line contains a single integer $n \ (3 \le n \le 80\,000)$ — the number of points on the plane.

Each of the next n lines contains two integers x_i , y_i $(|x_i|, |y_i| \le 10^9)$ — the coordinates of the points. It is guaranteed that all x_i are distinct and all y_i are distinct.

If task = 1, then the input ends here and you should output any permutation with the maximum possible sharpness. The interaction ends here.

If task $\neq 1$, then the next line contains a single integer $c \ (2 \le c \le \frac{n}{2})$.

If task = 2, then the input ends here and you should output any permutation with sharpness $\leq c$. The interaction ends here.

If task = 4, your solution should output n - 2c + 1 integers hash $(p^{(c)})$, hash $(p^{(c+1)})$, ..., hash $(p^{(n-c)})$, where $0 \le \text{hash}(p^{(i)}) < 10^9 + 7$. Note that this should not be done if task = 3.

Further interaction occurs only if task = 3 or task = 4.

The next line contains a single integer q $(1 \le q \le 50)$ — the number of queries.

Then q times, in each line, a query k_i ($c \le k_i \le n - c$) appears. As a response, you should output a permutation on a separate line. The sharpness of this permutation should be exactly k_i . If task = 4, the hash of this permutation should match the previously provided hash.

Since this is an interactive problem, after outputting each line, do not forget to output a newline character and flush the output buffer.

Scoring

The tests for this problem consist of twenty-one groups. Points for each group are given only if all tests of the group and all tests of the required groups are passed.

Group	Points	Constraints			Required	C t	
		task	n	с	Additional constraints	Groups	Comment
0	0	_	_	_	_	_	Examples.
1	8	1	$n \le 20000$	_	$x_i < x_{i+1}, y_i < y_{i+1}$	_	
2	6	1	$n \le 10$	_	random points	_	
3	5	1	$n \le 1000$	_	random points	2	
4	5	1	$n \le 20000$	_	random points	2-3	
5	6	1	$n \le 20000$	_	_	1-4	
6	17	2	n = 80000	c = 800	_	_	
7	7	3	n = 80000	c = 800	$x_i < x_{i+1}, y_i < y_{i+1}$	_	
8	4	3	n = 50	c = 25	random points	_	
9	4	3	n = 200	c = 80	random points	_	
10	4	3	n = 1000	c = 300	random points	_	
11	3	3	n = 5000	c = 600	random points	_	
12	3	3	n = 80000	c = 35000	random points	_	
13	3	3	n = 80000	c = 5000	random points	12	
14	3	3	n = 80000	c = 2000	_	12 - 13	
15	2	3	n = 80000	c = 800	_	7, 12 - 14	
16	6	4	n = 80000	c = 800	$x_i < x_{i+1}, y_i < y_{i+1}$	_	
17	3	4	n = 5000	c = 600	random points	_	
18	3	4	n = 80000	c = 35000	random points	_	
19	3	4	n = 80000	c = 5000	random points	18	
20	3	4	n = 80000	c = 2000	_	18 - 19	
21	2	4	n = 80000	c = 800	_	16, 18 - 20	

In the groups where it is indicated that the points are random, all coordinates of all points x_i , y_i are randomly generated with equal probability in the interval $[-10^9, 10^9]$.

Examples

standard input	standard output
1 0 4 2 3 1 8 4 2 0 0	3 2 4 1
2 0 5 -2 0 -1 -1 0 1 2 -2 3 -3 2	54312
3 0 6 0 0 1 1 2 2 3 -3 4 -2 5 -1 2 3 2 3 4	1 2 3 4 5 6 4 5 6 1 3 2 6 2 4 3 5 1
4 0 5 -2 -1 -1 1 1 6 0 -3 2 0 2 2 2 3	534735187 776162084 4 5 1 2 3 1 3 2 5 4

Note

In all the figures, acute angles are denoted by two arcs, and non-acute angles are denoted by a single arc.

In the first example all angles are sharp, so the line has maximum sharpness 2. In the second sample the sharpness equals to 1, it is ≤ 2 .

First and second examples

In the third example the lines have sharpness 2, 3, 4.

In the forth example we build lines that have sharpness 2 and 3. The lines have hashes equal to the ones provided earlier.