Draw Polygon Lines

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 megabytes

This is an interactive problem.
You are given n points $A_{i}=\left(x_{i}, y_{i}\right)$ on the plane. It is known that all x_{i} are distinct and all y_{i} are distinct. Your task is to draw polygonal lines connecting these n points.
A polygonal line is defined by a permutation $p_{1}, p_{2}, \ldots, p_{n}$ of numbers from 1 to n. The polygonal line consists of $n-1$ segments, the first segment connects points $A_{p_{1}}$ and $A_{p_{2}}$, the second segment connects points $A_{p_{2}}$ and $A_{p_{3}}, \ldots$, the last segment connects points $A_{p_{n-1}}$ and $A_{p_{n}}$. Note that segments may intersect. The sharpness of a polygonal line is defined as the number of indices $2 \leq i \leq n-1$ such that the angle $\angle A_{p_{i-1}} A_{p_{i}} A_{p_{i+1}}$ is acute, i.e., strictly less than 90°.
You need to solve four tasks:

1. Find any polygonal line that has the maximum possible sharpness.
2. Given an integer c. Find any polygonal line whose sharpness is $\leq c$.
3. Given an integer c.

Answer q queries, each specified by a single integer $k_{i}\left(c \leq k_{i} \leq n-c\right)$. In the i-th query, you need to construct a polygonal line that has sharpness exactly k_{i}.
4. Given an integer c.

For each k from c to $n-c$, construct a polygonal line $p^{(k)}$ with sharpness exactly k. Provide $n-2 c+1$ numbers hash $\left(p^{(c)}\right)$, hash $\left(p^{(c+1)}\right), \ldots$, hash $\left(p^{(n-c)}\right)$ as the answer, where $\operatorname{hash}(p)=\left(\sum_{i=1}^{n} p_{i} b^{i-1}\right) \bmod m$ is the polynomial hash of permutation p with parameters $b=10^{6}+3$ and $m=10^{9}+7$.
Then answer q queries, each specified by a single integer $k_{i}\left(c \leq k_{i} \leq n-c\right)$. In the i-th query, you need to provide the polygonal line $p^{\left(k_{i}\right)}$. It will be checked that the sharpness of this polygonal line is exactly k_{i} and its hash matches the previously provided value hash $\left(p^{\left(k_{i}\right)}\right)$.
Note that queries will appear after receiving the hashes.
It is guaranteed, that under given constraints, the answers always exist.

Interaction Protocol

The first line contains two integers task, group ($1 \leq$ task $\leq 4,0 \leq$ group ≤ 21) - the number of the task to be solved in this test and the test group number.
The second line contains a single integer $n(3 \leq n \leq 80000)$ - the number of points on the plane.
Each of the next n lines contains two integers $x_{i}, y_{i}\left(\left|x_{i}\right|,\left|y_{i}\right| \leq 10^{9}\right)$ - the coordinates of the points. It is guaranteed that all x_{i} are distinct and all y_{i} are distinct.
If task $=1$, then the input ends here and you should output any permutation with the maximum possible sharpness. The interaction ends here.
If task $\neq 1$, then the next line contains a single integer $c\left(2 \leq c \leq \frac{n}{2}\right)$.
If task $=2$, then the input ends here and you should output any permutation with sharpness $\leq c$. The interaction ends here.

If task $=4$, your solution should output $n-2 c+1$ integers hash $\left(p^{(c)}\right)$, hash $\left(p^{(c+1)}\right), \ldots, \operatorname{hash}\left(p^{(n-c)}\right)$, where $0 \leq \operatorname{hash}\left(p^{(i)}\right)<10^{9}+7$. Note that this should not be done if task $=3$.

Further interaction occurs only if task $=3$ or task $=4$.
The next line contains a single integer $q(1 \leq q \leq 50)$ - the number of queries.
Then q times, in each line, a query $k_{i}\left(c \leq k_{i} \leq n-c\right)$ appears. As a response, you should output a permutation on a separate line. The sharpness of this permutation should be exactly k_{i}. If task $=4$, the hash of this permutation should match the previously provided hash.
Since this is an interactive problem, after outputting each line, do not forget to output a newline character and flush the output buffer.

Scoring

The tests for this problem consist of twenty-one groups. Points for each group are given only if all tests of the group and all tests of the required groups are passed.

Group	Points	Constraints				Required Groups	Comment
		task	n	c	Additional constraints		
0	0	-	-	-	-	-	Examples.
1	8	1	$n \leq 20000$	-	$x_{i}<x_{i+1}, y_{i}<y_{i+1}$	-	
2	6	1	$n \leq 10$	-	random points	-	
3	5	1	$n \leq 1000$	-	random points	2	
4	5	1	$n \leq 20000$	-	random points	2-3	
5	6	1	$n \leq 20000$	-	-	$1-4$	
6	17	2	$n=80000$	$c=800$	-	-	
7	7	3	$n=80000$	$c=800$	$x_{i}<x_{i+1}, y_{i}<y_{i+1}$	-	
8	4	3	$n=50$	$c=25$	random points	-	
9	4	3	$n=200$	$c=80$	random points	-	
10	4	3	$n=1000$	$c=300$	random points	-	
11	3	3	$n=5000$	$c=600$	random points	-	
12	3	3	$n=80000$	$c=35000$	random points	-	
13	3	3	$n=80000$	$c=5000$	random points	12	
14	3	3	$n=80000$	$c=2000$	-	12-13	
15	2	3	$n=80000$	$c=800$	-	7, 12-14	
16	6	4	$n=80000$	$c=800$	$x_{i}<x_{i+1}, y_{i}<y_{i+1}$	-	
17	3	4	$n=5000$	$c=600$	random points	-	
18	3	4	$n=80000$	$c=35000$	random points	-	
19	3	4	$n=80000$	$c=5000$	random points	18	
20	3	4	$n=80000$	$c=2000$	-	18-19	
21	2	4	$n=80000$	$c=800$	-	16, $18-20$	

In the groups where it is indicated that the points are random, all coordinates of all points x_{i}, y_{i} are randomly generated with equal probability in the interval $\left[-10^{9}, 10^{9}\right]$.

Examples

standard input	standard output
$\begin{array}{ll} 1 & 0 \\ 4 & \\ 2 & 3 \\ 1 & 8 \\ 4 & 2 \\ 0 & 0 \end{array}$	3241
$\begin{array}{ll} \hline 2 & 0 \\ 5 & \\ -2 & 0 \\ -1 & -1 \\ 0 & 1 \\ 2 & -2 \\ 3 & -3 \\ 2 & \end{array}$	54312
$\begin{array}{ll} 3 & 0 \\ 6 & \\ 0 & 0 \\ 1 & 1 \\ 2 & 2 \\ 3 & -3 \\ 4 & -2 \\ 5 & -1 \\ 2 & \\ 3 & \\ 2 & \\ 3 & \\ 4 & \end{array}$	$\begin{aligned} & 12345 \\ & 4 \\ & 4 \end{aligned} \begin{array}{lllll} 6 & 6 & 1 & 2 \\ 6 & 2 & 4 & 3 & 5 \end{array} 1$
$\begin{array}{ll} \hline 4 & 0 \\ 5 & \\ -2 & -1 \\ -1 & 1 \\ 1 & 6 \\ 0 & -3 \\ 2 & 0 \\ 2 & \\ & \\ 2 & \\ 2 & \\ 3 & \end{array}$	$\begin{aligned} & 534735187 \quad 776162084 \\ & 4 \\ & 4 \end{aligned} 512 \begin{aligned} & 5 \\ & 1 \end{aligned} 3254$

Note

In all the figures, acute angles are denoted by two arcs, and non-acute angles are denoted by a single arc.

First and second examples

In the first example all angles are sharp, so the line has maximum sharpness 2 .
In the second sample the sharpness equals to 1 , it is ≤ 2.
Third example

In the third example the lines have sharpness $2,3,4$.
Forth example

In the forth example we build lines that have sharpness 2 and 3 . The lines have hashes equal to the ones provided earlier.

