E. Little Girl and Problem on Trees
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

A little girl loves problems on trees very much. Here's one of them.

A tree is an undirected connected graph, not containing cycles. The degree of node x in the tree is the number of nodes y of the tree, such that each of them is connected with node x by some edge of the tree.

Let's consider a tree that consists of n nodes. We'll consider the tree's nodes indexed from 1 to n. The cosidered tree has the following property: each node except for node number 1 has the degree of at most 2.

Initially, each node of the tree contains number 0. Your task is to quickly process the requests of two types:

• Request of form: 0 v x d. In reply to the request you should add x to all numbers that are written in the nodes that are located at the distance of at most d from node v. The distance between two nodes is the number of edges on the shortest path between them.
• Request of form: 1 v. In reply to the request you should print the current number that is written in node v.
Input

The first line contains integers n (2 ≤ n ≤ 105) and q (1 ≤ q ≤ 105) — the number of tree nodes and the number of requests, correspondingly.

Each of the next n  -  1 lines contains two integers ui and vi (1 ≤ ui, vi ≤ n, ui ≠ vi), that show that there is an edge between nodes ui and vi. Each edge's description occurs in the input exactly once. It is guaranteed that the given graph is a tree that has the property that is described in the statement.

Next q lines describe the requests.

• The request to add has the following format: 0 v x d (1 ≤ v ≤ n, 1 ≤ x ≤ 104, 1 ≤ d < n).
• The request to print the node value has the following format: 1 v (1 ≤ v ≤ n).

The numbers in the lines are separated by single spaces.

Output

For each request to print the node value print an integer — the reply to the request.

Examples
Input
3 61 21 30 3 1 20 2 3 10 1 5 21 11 21 3
Output
996
Input
6 111 22 55 41 61 30 3 1 30 3 4 50 2 1 40 1 5 50 4 6 21 11 21 31 41 51 6
Output
111711161711