Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

No tag edit access

B. I.O.U.

time limit per test

1 secondmemory limit per test

256 megabytesinput

standard inputoutput

standard outputImagine that there is a group of three friends: A, B and С. A owes B 20 rubles and B owes C 20 rubles. The total sum of the debts is 40 rubles. You can see that the debts are not organized in a very optimal manner. Let's rearrange them like that: assume that A owes C 20 rubles and B doesn't owe anything to anybody. The debts still mean the same but the total sum of the debts now equals 20 rubles.

This task is a generalisation of a described example. Imagine that your group of friends has *n* people and you know the debts between the people. Optimize the given debts without changing their meaning. In other words, finally for each friend the difference between the total money he should give and the total money he should take must be the same. Print the minimum sum of all debts in the optimal rearrangement of the debts. See the notes to the test samples to better understand the problem.

Input

The first line contains two integers *n* and *m* (1 ≤ *n* ≤ 100; 0 ≤ *m* ≤ 10^{4}). The next *m* lines contain the debts. The *i*-th line contains three integers *a*_{i}, *b*_{i}, *c*_{i} (1 ≤ *a*_{i}, *b*_{i} ≤ *n*; *a*_{i} ≠ *b*_{i}; 1 ≤ *c*_{i} ≤ 100), which mean that person *a*_{i} owes person *b*_{i} *c*_{i} rubles.

Assume that the people are numbered by integers from 1 to *n*.

It is guaranteed that the same pair of people occurs at most once in the input. The input doesn't simultaneously contain pair of people (*x*, *y*) and pair of people (*y*, *x*).

Output

Print a single integer — the minimum sum of debts in the optimal rearrangement.

Examples

Input

5 3

1 2 10

2 3 1

2 4 1

Output

10

Input

3 0

Output

0

Input

4 3

1 2 1

2 3 1

3 1 1

Output

0

Note

In the first sample, you can assume that person number 1 owes 8 rubles to person number 2, 1 ruble to person number 3 and 1 ruble to person number 4. He doesn't owe anybody else anything. In the end, the total debt equals 10.

In the second sample, there are no debts.

In the third sample, you can annul all the debts.

Codeforces (c) Copyright 2010-2020 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Jan/28/2020 05:32:31 (i2).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|