Codeforces celebrates 10 years! We are pleased to announce the crowdfunding-campaign. Congratulate us by the link https://codeforces.com/10years.
×

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

No tag edit access

E. Anton and Ira

time limit per test

1 secondmemory limit per test

256 megabytesinput

standard inputoutput

standard outputAnton loves transforming one permutation into another one by swapping elements for money, and Ira doesn't like paying for stupid games. Help them obtain the required permutation by paying as little money as possible.

More formally, we have two permutations, *p* and *s* of numbers from 1 to *n*. We can swap *p*_{i} and *p*_{j}, by paying |*i* - *j*| coins for it. Find and print the smallest number of coins required to obtain permutation *s* from permutation *p*. Also print the sequence of swap operations at which we obtain a solution.

Input

The first line contains a single number *n* (1 ≤ *n* ≤ 2000) — the length of the permutations.

The second line contains a sequence of *n* numbers from 1 to *n* — permutation *p*. Each number from 1 to *n* occurs exactly once in this line.

The third line contains a sequence of *n* numbers from 1 to *n* — permutation *s*. Each number from 1 to *n* occurs once in this line.

Output

In the first line print the minimum number of coins that you need to spend to transform permutation *p* into permutation *s*.

In the second line print number *k* (0 ≤ *k* ≤ 2·10^{6}) — the number of operations needed to get the solution.

In the next *k* lines print the operations. Each line must contain two numbers *i* and *j* (1 ≤ *i*, *j* ≤ *n*, *i* ≠ *j*), which means that you need to swap *p*_{i} and *p*_{j}.

It is guaranteed that the solution exists.

Examples

Input

4

4 2 1 3

3 2 4 1

Output

3

2

4 3

3 1

Note

In the first sample test we swap numbers on positions 3 and 4 and permutation *p* becomes 4 2 3 1. We pay |3 - 4| = 1 coins for that. On second turn we swap numbers on positions 1 and 3 and get permutation 3241 equal to *s*. We pay |3 - 1| = 2 coins for that. In total we pay three coins.

Codeforces (c) Copyright 2010-2020 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Feb/18/2020 05:15:44 (h1).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|