Codeforces Round #416 (Div. 2) has been moved to start on 27.05.2017 09:35 (UTC).
×

No tag edit access

G. PolandBall and Many Other Balls

time limit per test

6 secondsmemory limit per test

256 megabytesinput

standard inputoutput

standard outputPolandBall is standing in a row with Many Other Balls. More precisely, there are exactly *n* Balls. Balls are proud of their home land — and they want to prove that it's strong.

The Balls decided to start with selecting exactly *m* groups of Balls, each consisting either of single Ball or two neighboring Balls. Each Ball can join no more than one group.

The Balls really want to impress their Enemies. They kindly asked you to calculate number of such divisions for all *m* where 1 ≤ *m* ≤ *k*. Output all these values modulo 998244353, the Enemies will be impressed anyway.

Input

There are exactly two numbers *n* and *k* (1 ≤ *n* ≤ 10^{9}, 1 ≤ *k* < 2^{15}), denoting the number of Balls and the maximim number of groups, respectively.

Output

You should output a sequence of *k* values. The *i*-th of them should represent the sought number of divisions into exactly *i* groups, according to PolandBall's rules.

Examples

Input

3 3

Output

5 5 1

Input

1 1

Output

1

Input

5 10

Output

9 25 25 9 1 0 0 0 0 0

Note

In the first sample case we can divide Balls into groups as follows:

{1}, {2}, {3}, {12}, {23}.

{12}{3}, {1}{23}, {1}{2}, {1}{3}, {2}{3}.

{1}{2}{3}.

Therefore, output is: 5 5 1.

Codeforces (c) Copyright 2010-2017 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: May/26/2017 19:50:14 (c4).

Desktop version, switch to mobile version.
User lists

Name |
---|