Please, try EDU on Codeforces! New educational section with videos, subtitles, texts, and problems. ×

On the time complexity of merging BSTs

Revision en3, by dragonslayerintraining, 2019-06-27 03:32:34

Question

Is there a data structure that supports $$$n$$$ of the following operations in $$$O(n\log{n})$$$?

  1. Create a set containing a single integer in the range $$$[1,n]$$$.
  2. Create the union of two sets, destroying the original sets in the process. The original sets may have overlapping ranges.
  3. For any integer $$$x$$$ and a set, split the set into two sets: one with all elements less than $$$x$$$ and one with all elements greater than or equal to $$$x$$$.
  4. For any integer $$$x$$$ and a set, add $$$x$$$ to all elements in the set. This operation is only allowed if all elements will remain in the range $$$[1,n]$$$.
  5. Count the number of elements in a set.

Partial Solutions

If operation 2 required the ranges to be disjoint, any balanced BST that supports split and join in $$$O(\log{n})$$$ will work.

Without operation 3, join-based tree algorithms will work since they support union in $$$O(m\log{\frac{n}{m}+1})$$$.

(Note that this is better than small to large, which takes $$$O(n\log^2{n})$$$ time total.)

Without operation 4, a version of segment trees will work.

Full Solution

I was able to prove that binary search trees will solve the problem in $$$O(n\log^2{n})$$$. (Was this "well known" before?)

If we merge using split and join, this bound is tight. A set can be constructed by merging the set of even-index element and odd-index elements, which will take $$$O(n\log{n})$$$. Those two sequences could have been constructed the same way recursively. This will take $$$O(n\log^2{n})$$$ time for $$$O(n)$$$ operations.

However, I conjecture that if we use join-based tree algorithms, it will actually be $$$O(n\log{n})$$$ in the worst case. (For example, in the case above, merges take $$$O(n)$$$.)

Can anyone prove or disprove this conjecture for any join-based tree algorithm?

If anyone can prove it for splay trees instead, or have another solution, I would also be interested.

Thanks.

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en3 English dragonslayerintraining 2019-06-27 03:32:34 0 (published)
en2 English dragonslayerintraining 2019-06-27 03:28:36 951 Tiny change: 'og{n})$?\n1. Creat' -> 'og{n})$?\n\n\n1. Creat'
en1 English dragonslayerintraining 2019-06-27 02:32:34 1417 Initial revision (saved to drafts)