can anyone help in solving the following question.

consider a weighted undirected graph. There is a source S and destination D and a value K. Find the length of the shortest path such that you can make at most K edges 0.

# | User | Rating |
---|---|---|

1 | tourist | 3735 |

2 | MiFaFaOvO | 3681 |

3 | Um_nik | 3553 |

4 | Benq | 3376 |

5 | ecnerwala | 3295 |

6 | maroonrk | 3229 |

7 | TLE | 3223 |

8 | Radewoosh | 3216 |

9 | scott_wu | 3209 |

10 | Petr | 3205 |

# | User | Contrib. |
---|---|---|

1 | Errichto | 202 |

2 | antontrygubO_o | 191 |

3 | pikmike | 188 |

4 | Monogon | 185 |

5 | vovuh | 184 |

6 | Ashishgup | 182 |

7 | Um_nik | 180 |

8 | Radewoosh | 173 |

9 | SecondThread | 172 |

10 | McDic | 161 |

can anyone help in solving the following question.

consider a weighted undirected graph. There is a source S and destination D and a value K. Find the length of the shortest path such that you can make at most K edges 0.

↑

↓

Codeforces (c) Copyright 2010-2020 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Aug/08/2020 03:48:41 (i1).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|

We can create a graph with $$$k$$$ layers — lets call it $$$G[n][k]$$$. For each edge $$$(v,u,w)$$$ we add two types of edges to our graph:

$$$G[v][i]$$$ — $$$G[u][i]$$$ with weight $$$w$$$ (standard edge, needs to be in each layer)

$$$G[v][i]$$$ — $$$G[u][i+1]$$$ with weight $$$0$$$ ("skipping" edge, also in each layer)

Now if we calculate minimum distances to each vertex in the whole graph, distance to $$$G[v][l]$$$ will mean minimum distance to vertex $$$v$$$ if we made exactly $$$l$$$ edges to be equal 0.

If the weights are positive we can use Dijkstra's algorithm to calculate minimum distances giving us $$$O(nk*log(nk))$$$ complexity.

If weights can be negative we use Bellman–Ford algorithm giving us $$$O(n^2k^2)$$$ comlpexity.

Note that we need to take minimum distance to $$$d$$$ in all layers in order to find the answer (we "skip"

at most$$$k$$$ edges)greg19 thanks for the solution. Can you please elaborate the process of adding an edge in the graph. And is it possible to have a dp solution??