can anyone help in solving the following question.

consider a weighted undirected graph. There is a source S and destination D and a value K. Find the length of the shortest path such that you can make at most K edges 0.

# | User | Rating |
---|---|---|

1 | tourist | 3947 |

2 | ecnerwala | 3654 |

3 | jiangly | 3627 |

4 | jqdai0815 | 3620 |

5 | orzdevinwang | 3612 |

6 | Benq | 3586 |

7 | Radewoosh | 3582 |

8 | Geothermal | 3569 |

8 | cnnfls_csy | 3569 |

10 | ksun48 | 3474 |

# | User | Contrib. |
---|---|---|

1 | awoo | 163 |

2 | maomao90 | 160 |

3 | adamant | 156 |

4 | atcoder_official | 154 |

5 | maroonrk | 152 |

6 | -is-this-fft- | 148 |

6 | SecondThread | 148 |

8 | Petr | 147 |

9 | nor | 145 |

10 | cry | 144 |

can anyone help in solving the following question.

consider a weighted undirected graph. There is a source S and destination D and a value K. Find the length of the shortest path such that you can make at most K edges 0.

↑

↓

Codeforces (c) Copyright 2010-2024 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Aug/03/2024 03:33:25 (k2).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|

We can create a graph with $$$k$$$ layers — lets call it $$$G[n][k]$$$. For each edge $$$(v,u,w)$$$ we add two types of edges to our graph:

$$$G[v][i]$$$ — $$$G[u][i]$$$ with weight $$$w$$$ (standard edge, needs to be in each layer)

$$$G[v][i]$$$ — $$$G[u][i+1]$$$ with weight $$$0$$$ ("skipping" edge, also in each layer)

Now if we calculate minimum distances to each vertex in the whole graph, distance to $$$G[v][l]$$$ will mean minimum distance to vertex $$$v$$$ if we made exactly $$$l$$$ edges to be equal 0.

If the weights are positive we can use Dijkstra's algorithm to calculate minimum distances giving us $$$O(nk*log(nk))$$$ complexity.

If weights can be negative we use Bellman–Ford algorithm giving us $$$O(n^2k^2)$$$ comlpexity.

Note that we need to take minimum distance to $$$d$$$ in all layers in order to find the answer (we "skip"

at most$$$k$$$ edges)Why we need to take minimum in all layers , should n't the minimum should be when you have skipped k edges . i.e G[dest][k] ??

Because you can skip

at most $$$k$$$edges. It's unnecessary for positive weights, but for negative weights can result in wrong answers.What does 'i' represent here? Can you provide a picture of any example?

can someone give link to problem of this type on codeforces

Here is one from codeforces.

CODE with explanation void findMinDistance(vector<pair<int, int>> adj[], int N, int k) { // {dist, {node, leftout}} priority_queue<pair<int, pair<int, int>>> pq; pq.push({0, {1, 0}});

}