Perhaps today and/or tomorrow due to a power outage there may be disruptions in the work of Codeforces and Polygon. Please do not plan any important events during this time. If there are details or the exact time, we will definitely publish them. Estimated time of maintenance: from 2 Aug, 16:00 (UTC) to 2 Aug, 20:00 (UTC). ×

E. Blood Cousins
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Polycarpus got hold of a family relationship tree. The tree describes family relationships of n people, numbered 1 through n. Each person in the tree has no more than one parent.

Let's call person a a 1-ancestor of person b, if a is the parent of b.

Let's call person a a k-ancestor (k > 1) of person b, if person b has a 1-ancestor, and a is a (k - 1)-ancestor of b's 1-ancestor.

Family relationships don't form cycles in the found tree. In other words, there is no person who is his own ancestor, directly or indirectly (that is, who is an x-ancestor for himself, for some x, x > 0).

Let's call two people x and y (x ≠ y) p-th cousins (p > 0), if there is person z, who is a p-ancestor of x and a p-ancestor of y.

Polycarpus wonders how many counsins and what kinds of them everybody has. He took a piece of paper and wrote m pairs of integers vi, pi. Help him to calculate the number of pi-th cousins that person vi has, for each pair vi, pi.

Input

The first input line contains a single integer n (1 ≤ n ≤ 105) — the number of people in the tree. The next line contains n space-separated integers r1, r2, ..., rn, where ri (1 ≤ ri ≤ n) is the number of person i's parent or 0, if person i has no parent. It is guaranteed that family relationships don't form cycles.

The third line contains a single number m (1 ≤ m ≤ 105) — the number of family relationship queries Polycarus has. Next m lines contain pairs of space-separated integers. The i-th line contains numbers vi, pi (1 ≤ vi, pi ≤ n).

Output

Print m space-separated integers — the answers to Polycarpus' queries. Print the answers to the queries in the order, in which the queries occur in the input.

Examples
Input
6
0 1 1 0 4 4
7
1 1
1 2
2 1
2 2
4 1
5 1
6 1
Output
0 0 1 0 0 1 1