Problem A. Minimal Product

Input file:
Output file:
Time limit:
Memory limit
standard input
standard output
2 seconds
512 megabytes

You are given an array of integers a_{1}, \ldots, a_{n}. Find two indices i and j such that $i<j, a_{i}<a_{j}$, and the product $a_{i} \cdot a_{j}$ is as small as possible.

Input

The input consists of several tests. The first line contains a single integer t - the number of tests $\left(1 \leq t \leq 10^{4}\right)$. Each of the following t lines describes one test.
Each test is generated using the following algorithm. The test is described by integers n, l, r, x, y, z, b_{1}, $b_{2}\left(2 \leq n \leq 10^{7},-2 \cdot 10^{9} \leq l \leq r \leq 2 \cdot 10^{9}, 0 \leq x, y, z, b_{1}, b_{2}<2^{32}\right.$), where n is the length of the array.
First, the sequence b_{i} of length n is generated. Elements b_{1} and b_{2} are given. For $i>2$ let $b_{i}=\left(b_{i-2} x+b_{i-1} y+z\right) \bmod 2^{32}$. For each i between 1 and $n, a_{i}=\left(b_{i} \bmod (r-l+1)\right)+l$ (thus, $\left.-2 \cdot 10^{9} \leq a_{i} \leq 2 \cdot 10^{9}\right)$.
It is recommended to use 64 -bit integers to generate the sequence to avoid integer overflow.
The sum of n in all tests does not exceed $2 \cdot 10^{7}$.

Output

For each test, print the smallest possible product $a_{i} \cdot a_{j}$ in a separate line. If there are no such i and j that $i<j$ and $a_{i}<a_{j}$, print "IMPOSSIBLE".

Example

standard input	standard output
2	-15
$\begin{array}{lllllllll}4 & -5 & 5 & 11 & 13 & 17 & 0 & 3\end{array}$	IMPOSSIBLE
501000104242	

Note

Let us consider the generation of the array in the first test.
First, the sequence b is generated.

- $b_{1}=0$
- $b_{2}=3$
- $b_{3}=(11 \cdot 0+13 \cdot 3+17) \bmod 2^{32}=56$
- $b_{4}=(11 \cdot 3+13 \cdot 56+17) \bmod 2^{32}=778$

Then it is used to generate a.

- $a_{1}=(0 \bmod (5-(-5)+1))+(-5)=(0 \bmod 11)-5=-5$
- $a_{2}=(3 \bmod 11)-5=-2$
- $a_{3}=(56 \bmod 11)-5=-4$
- $a_{4}=(778 \bmod 11)-5=3$

Thus, $a=[-5,-2,-4,3]$. The answer is $-5 \cdot 3=-15$.
In the second test the array is $[42,42,42,42,42]$.

