Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

No tag edit access

The problem statement has recently been changed. View the changes.

×
D. Returning Home

time limit per test

2 secondsmemory limit per test

256 megabytesinput

standard inputoutput

standard outputYura has been walking for some time already and is planning to return home. He needs to get home as fast as possible. To do this, Yura can use the instant-movement locations around the city.

Let's represent the city as an area of $$$n \times n$$$ square blocks. Yura needs to move from the block with coordinates $$$(s_x,s_y)$$$ to the block with coordinates $$$(f_x,f_y)$$$. In one minute Yura can move to any neighboring by side block; in other words, he can move in four directions. Also, there are $$$m$$$ instant-movement locations in the city. Their coordinates are known to you and Yura. Yura can move to an instant-movement location in no time if he is located in a block with the same coordinate $$$x$$$ or with the same coordinate $$$y$$$ as the location.

Help Yura to find the smallest time needed to get home.

Input

The first line contains two integers $$$n$$$ and $$$m$$$ — the size of the city and the number of instant-movement locations ($$$1 \le n \le 10^9$$$, $$$0 \le m \le 10^5$$$).

The next line contains four integers $$$s_x$$$ $$$s_y$$$ $$$f_x$$$ $$$f_y$$$ — the coordinates of Yura's initial position and the coordinates of his home ($$$ 1 \le s_x, s_y, f_x, f_y \le n$$$).

Each of the next $$$m$$$ lines contains two integers $$$x_i$$$ $$$y_i$$$ — coordinates of the $$$i$$$-th instant-movement location ($$$1 \le x_i, y_i \le n$$$).

Output

In the only line print the minimum time required to get home.

Examples

Input

5 3 1 1 5 5 1 2 4 1 3 3

Output

5

Input

84 5 67 59 41 2 39 56 7 2 15 3 74 18 22 7

Output

42

Note

In the first example Yura needs to reach $$$(5, 5)$$$ from $$$(1, 1)$$$. He can do that in $$$5$$$ minutes by first using the second instant-movement location (because its $$$y$$$ coordinate is equal to Yura's $$$y$$$ coordinate), and then walking $$$(4, 1) \to (4, 2) \to (4, 3) \to (5, 3) \to (5, 4) \to (5, 5)$$$.

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Jun/17/2021 11:48:49 (i2).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|