Three Arrays

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 megabytes

You are given three arrays D, L, and R of length n, with elements indexed from 1 , as well as the integers a_{0} and b_{0}. You construct two arrays A and B of length $n+1$ according to the following rules:

1. $A_{0}=a_{0}, B_{0}=b_{0}$
2. For all i from 1 to n, perform the following actions:
(a) Set the elements as $A_{i}=A_{i-1}+D_{i}$ and $B_{i}=B_{i-1}+D_{i}$.
(b) Choose exactly one of the following operations and apply it:

$$
\begin{aligned}
& \text { - } A_{i}=\min \left(A_{i}, L_{i}\right) \\
& \text { - } B_{i}=\min \left(B_{i}, R_{i}\right)
\end{aligned}
$$

You want to construct arrays A and B to maximize the value of $A_{n}+B_{n}$. Find the maximum value of $A_{n}+B_{n}$ that can be obtained by performing the described actions.

Input

The first line contains a single integer $n(1 \leq n \leq 100000)$ - the length of arrays D, L, and R.
The second line contains n integers $D_{1}, D_{2}, \ldots, D_{n}\left(0 \leq D_{i} \leq 10^{9}\right)$ - the array D.
The third line contains n integers $L_{1}, L_{2}, \ldots, L_{n}\left(0 \leq L_{i} \leq 10^{9}\right)$ - the array L.
The fourth line contains n integers $R_{1}, R_{2}, \ldots, R_{n}\left(0 \leq R_{i} \leq 10^{9}\right)$ - the array R.
The fifth line contains two integers a_{0} and $b_{0}\left(0 \leq a_{0}, b_{0} \leq 10^{9}\right)$.

Output

Output a single integer - the maximum possible value of $A_{n}+B_{n}$ among all possible ways to construct arrays A and B.

Scoring

The tests for this problem consist of six groups. Points for each group are given only if all tests of the group and all tests of the required groups are passed. Please note that passing the example tests is not required for some groups. Offline-evaluation means that the results of testing your solution on this group will only be available after the end of the competition.

Group	Points	Additional constraints		Required groups	Comment
		n	D_{i}		Examples.
0	0	-	-	-	
1	13	$n \leq 15$	-	0	
2	18	$n \leq 300$	-	0,1	
3	14	$n \leq 5000$	$D_{i}=0$	-	
4	16	$n \leq 5000$	-	$0-3$	
5	19	-	$D_{i}=0$	3	
6	20	-	-	$0-5$	Offline-evaluation.

Example

standard input	standard output
5	34
40708	
105377	
859223	
48	

Note

In the first set of input data, the following sequence of actions leads to the maximum answer:

1. $A_{0}=4, B_{0}=8$.
2. $A_{1}=A_{0}+D_{1}=4+4=8, B_{1}=B_{0}+D_{1}=8+4=12$.
3. The minimum is applied to $A_{1}=\min \left(A_{1}, L_{1}\right)=\min (10,8)=8$, the value of $B_{1}=12$ remains the same
4. $A_{2}=A_{1}+D_{2}=8+0=8, B_{2}=B_{1}+D_{2}=12+0=12$.
5. The minimum is applied to $A_{2}=\min \left(A_{2}, L_{2}\right)=\min (5,8)=5$, the value of $B_{2}=12$ remains the same.
6. $A_{3}=A_{2}+D_{3}=12, B_{3}=B_{2}+D_{3}=19$
7. The minimum is applied to $A_{3}=\min \left(A_{3}, L_{3}\right)=3$, the value of $B_{3}=19$ remains the same.
8. $A_{4}=A_{4}+D_{3}=3, B_{4}=B_{3}+D_{4}=19$.
9. The minimum is applied to $A_{4}=\min \left(A_{4}, L_{4}\right)=3$, the value of $B_{4}=19$ remains the same.
10. $A_{5}=A_{5}+D_{4}=11, B_{5}=B_{4}+D_{5}=27$.
11. The value of $A_{5}=11$ remains the same, $B_{5}=\min \left(B_{5}, R_{5}\right)=\min (27,23)=23$.
12. $A_{5}+B_{5}=11+23=34$.

It can be shown that this is the maximum value.

