## Triangles 3000

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 5 seconds |
| Memory limit: | 512 megabytes |

You are given a set $L=\left\{l_{1}, l_{2}, \ldots, l_{n}\right\}$ of $n$ pairwise non-parallel lines on the Euclidean plane. The $i$-th line is given by an equation in the form of $a_{i} x+b_{i} y=c_{i}$. $L$ doesn't contain three lines coming through the same point.

A subset of three distinct lines is chosen equiprobably. Determine the expected value of the area of the triangle formed by the three lines.

## Input

The first line of the input contains integer $n(3 \leq n \leq 3000)$.
Each of the next lines contains three integers $a_{i}, b_{i}, c_{i}\left(-100 \leq a_{i}, b_{i} \leq 100, a_{i}^{2}+b_{i}^{2}>0\right.$, $\left.-10000 \leq c_{i} \leq 10000\right)$ - the coefficients defining the $i$-th line.
It is guaranteed that no two lines are parallel. Besides, any two lines intersect at angle at least $10^{-4}$ radians.

If we assume that $I$ is a set of points of pairwise intersection of the lines (i. e. $I=\left\{l_{i} \cap l_{j} \mid i<j\right\}$ ), then for any point $a \in I$ it is true that the coordinates of $a$ do not exceed $10^{6}$ by their absolute values. Also, for any two distinct points $a, b \in I$ the distance between $a$ and $b$ is no less than $10^{-5}$.

## Output

Print a single real number equal to the sought expected value. Your answer will be checked with the absolute or relative error $10^{-4}$.

## Examples

|  |  | standard input |  | standard output |
| :--- | :--- | :--- | :--- | :--- |
| 4 |  |  | 1.25 |  |
| 1 | 0 | 0 |  |  |
| 0 | 1 | 0 |  |  |
| 1 | 1 | 2 |  |  |
| -1 | 1 | -1 |  |  |

## Note

A sample from the statement is shown below. There are four triangles on the plane, their areas are $0.25,0.5,2,2.25$.


