Consider↵
↵
$R_k = \sum_{j = 0}^{ j = k - 1} \sqrt\nu_j(\sqrt{k - j} - \sqrt{k - 1 - j})$↵
$\newline$↵
Can we compute $\sum_{j = 1}^{j = K} \nu_kR_k$ in less than O(K^2) ?↵
$\newline$↵
$\nu$ and $R$ are arrays of double size $K$↵
$\newline$↵
The answer is a double.
↵
$R_k = \sum_{j = 0}^{ j = k - 1} \sqrt\nu_j(\sqrt{k - j} - \sqrt{k - 1 - j})$↵
$\newline$↵
Can we compute $\sum_{j = 1}^{j = K} \nu_kR_k$ in less than O(K^2) ?↵
$\newline$↵
$\nu$ and $R$ are arrays of double size $K$↵
$\newline$↵
The answer is a double.