Consider
$$$R_k = \sum_{j = 0}^{ j = k - 1} \sqrt\nu_j(\sqrt{k - j} - \sqrt{k - 1 - j})$$$ $$$\newline$$$ Can we compute $$$\sum_{j = 1}^{j = K} \nu_kR_k$$$ in less than O(K^2) ? $$$\nu$$$ and R are arrays of size $$$K$$$
# | User | Rating |
---|---|---|
1 | Benq | 3813 |
2 | tourist | 3768 |
3 | maroonrk | 3570 |
4 | Radewoosh | 3535 |
5 | fantasy | 3526 |
6 | jiangly | 3523 |
7 | Um_nik | 3522 |
8 | orzdevinwang | 3441 |
9 | cnnfls_csy | 3427 |
10 | zh0ukangyang | 3423 |
# | User | Contrib. |
---|---|---|
1 | awoo | 180 |
2 | -is-this-fft- | 178 |
3 | nor | 169 |
4 | Um_nik | 168 |
5 | SecondThread | 164 |
6 | maroonrk | 163 |
7 | adamant | 162 |
8 | kostka | 161 |
9 | YouKn0wWho | 158 |
10 | antontrygubO_o | 154 |
Wan we do better than O( Unable to parse markup [type=CF_MATHJAX]$)
Consider
$$$R_k = \sum_{j = 0}^{ j = k - 1} \sqrt\nu_j(\sqrt{k - j} - \sqrt{k - 1 - j})$$$ $$$\newline$$$ Can we compute $$$\sum_{j = 1}^{j = K} \nu_kR_k$$$ in less than O(K^2) ? $$$\nu$$$ and R are arrays of size $$$K$$$
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en9 |
![]() |
chika10 | 2022-09-28 12:36:58 | 2 | ||
en8 |
![]() |
chika10 | 2022-09-28 11:48:09 | 12 | ||
en7 |
![]() |
chika10 | 2022-09-28 11:47:29 | 7 | Tiny change: 'of double size $K$\' -> 'of double of size $K$\' | |
en6 |
![]() |
chika10 | 2022-09-28 11:47:06 | 44 | ||
en5 |
![]() |
chika10 | 2022-09-28 11:45:47 | 45 | ||
en4 |
![]() |
chika10 | 2022-09-28 11:45:26 | 14 | Tiny change: '^2) ?\n$\nu$ and R are array' -> '^2) ?\n$\newline$\n$\nu$ and $R$ are array' (published) | |
en3 |
![]() |
chika10 | 2022-09-28 11:44:44 | 51 | Tiny change: '1 - j})$\n\newline\nCan we c' -> '1 - j})$\n$\newline$\nCan we c' | |
en2 |
![]() |
chika10 | 2022-09-28 11:44:31 | 120 | ||
en1 |
![]() |
chika10 | 2022-09-28 11:41:59 | 119 | Initial revision (saved to drafts) |
Name |
---|