Wan we do better than O(

Unable to parse markup [type=CF_MATHJAX]

$) Revision en7, by chika10, 2022-09-28 11:47:29 Consider $R_k = \sum_{j = 0}^{ j = k - 1} \sqrt\nu_j(\sqrt{k - j} - \sqrt{k - 1 - j})$ $\newline$ Can we compute $\sum_{j = 1}^{j = K} \nu_kR_k$ in less than O(K^2) ? $\newline$ $\nu$ and $R$ are arrays of double of size $K$ $\newline$ The answer is a double. #### History Revisions Rev. Lang. By When Δ Comment en9 chika10 2022-09-28 12:36:58 2 en8 chika10 2022-09-28 11:48:09 12 en7 chika10 2022-09-28 11:47:29 7 Tiny change: 'of double size$K$\' -> 'of double of size$K$\' en6 chika10 2022-09-28 11:47:06 44 en5 chika10 2022-09-28 11:45:47 45 en4 chika10 2022-09-28 11:45:26 14 Tiny change: '^2) ?\n$\nu$and R are array' -> '^2) ?\n$\newline$\n$\nu$and$R$are array' (published) en3 chika10 2022-09-28 11:44:44 51 Tiny change: '1 - j})$\n\newline\nCan we c' -> '1 - j})$\n$\newline\$\nCan we c'
en2 chika10 2022-09-28 11:44:31 120
en1 chika10 2022-09-28 11:41:59 119 Initial revision (saved to drafts)