Revision en7, by DeadlyCritic, 2020-04-25 12:04:17

We have an array( $a$ ) of length $n$, all the elements are less than or equal to $n$, then we have to answer $q$ queries, each will be three numbers $x$, $l$, $r$, then you have to print $\displaystyle\sum\limits_{l \le i mod x \le r}a_i$, i.e print the sum of all $a_i$ for $1 \le i \le n$ and $i$ mod $x$ is in range $[l \cdot \cdot r]$.

$0 \le l \le r < x \le n$

The first query can be changed a little bit, it can be like we have $k$, $x$, $l$, $r$, then print the same number but with $i > k$.

$0 \le k < n$ help,

#### History

Revisions Rev. Lang. By When Δ Comment
en7 DeadlyCritic 2020-04-25 12:04:17 55
en6 DeadlyCritic 2020-04-25 12:01:55 2 Tiny change: ' n$and$i mod x$is in r' -> ' n$ and $i$ mod $x$ is in r'
en5 DeadlyCritic 2020-04-25 12:01:11 8 Tiny change: 'ut with \n\n$i > k$.\n$\le 0 \le k < ' -> 'ut with \n$i > k$.\n\n$0 \le k < '
en4 DeadlyCritic 2020-04-25 12:00:27 110
en3 DeadlyCritic 2020-04-25 11:58:28 18 Tiny change: ' $O(n^2+q\radical{q}+q\radical{n})$, how' -> ' $O(n^2+q\sqrt{q}+q\sqrt{n})$, how' (published)
en2 DeadlyCritic 2020-04-25 11:55:24 0 (saved to drafts)
en1 DeadlyCritic 2020-04-25 11:54:40 706 Initial revision (published)