Problem A. Distance Sum

Time limit: $\quad 3$ seconds
You are given a connected undirected unweighted graph. The distance $d(u, v)$ between two vertices u and v is defined as the number of edges in the shortest path between them. Find the sum of $d(u, v)$ over all unordered pairs (u, v).

Input

The first line of the input contains two integers n and $m\left(2 \leq n \leq 10^{5} ; n-1 \leq m \leq n+42\right)$ - the number of vertices and the number of edges in the graph respectively. The vertices are numbered from 1 to n.

Each of the following m lines contains two integers x_{i} and $y_{i}\left(1 \leq x_{i}, y_{i} \leq n ; x_{i} \neq y_{i}\right)$ - the endpoints of the i-th edge.

There is at most one edge between every pair of vertices.

Output

Output a single integer - the sum of the distances between all unordered pairs of vertices in the graph.

Examples

standard input	standard output	Illustration
$\begin{array}{ll} \hline 4 & 4 \\ 1 & 2 \\ 2 & 3 \\ 3 & 1 \\ 3 & 4 \end{array}$	8	
7 10 1 2 2 6 5 3 5 4 5 7 3 6 1 7 5 1 7 4 4 1	34	

Note

In the first example the distance between four pairs of vertices connected by an edge is equal to 1 and $d(1,4)=d(2,4)=2$.

