Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

No tag edit access

The problem statement has recently been changed. View the changes.

×
E. Fedya the Potter

time limit per test

2.5 secondsmemory limit per test

256 megabytesinput

standard inputoutput

standard outputFedya loves problems involving data structures. Especially ones about different queries on subsegments. Fedya had a nice array $$$a_1, a_2, \ldots a_n$$$ and a beautiful data structure. This data structure, given $$$l$$$ and $$$r$$$, $$$1 \le l \le r \le n$$$, could find the greatest integer $$$d$$$, such that $$$d$$$ divides each of $$$a_l$$$, $$$a_{l+1}$$$, ..., $$$a_{r}$$$.

Fedya really likes this data structure, so he applied it to every non-empty contiguous subarray of array $$$a$$$, put all answers into the array and sorted it. He called this array $$$b$$$. It's easy to see that array $$$b$$$ contains $$$n(n+1)/2$$$ elements.

After that, Fedya implemented another cool data structure, that allowed him to find sum $$$b_l + b_{l+1} + \ldots + b_r$$$ for given $$$l$$$ and $$$r$$$, $$$1 \le l \le r \le n(n+1)/2$$$. Surely, Fedya applied this data structure to every contiguous subarray of array $$$b$$$, called the result $$$c$$$ and sorted it. Help Fedya find the lower median of array $$$c$$$.

Recall that for a sorted array of length $$$k$$$ the lower median is an element at position $$$\lfloor \frac{k + 1}{2} \rfloor$$$, if elements of the array are enumerated starting from $$$1$$$. For example, the lower median of array $$$(1, 1, 2, 3, 6)$$$ is $$$2$$$, and the lower median of $$$(0, 17, 23, 96)$$$ is $$$17$$$.

Input

First line contains a single integer $$$n$$$ — number of elements in array $$$a$$$ ($$$1 \le n \le 50\,000$$$).

Second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ — elements of the array ($$$1 \le a_i \le 100\,000$$$).

Output

Print a single integer — the lower median of array $$$c$$$.

Examples

Input

2 6 3

Output

6

Input

2 8 8

Output

8

Input

5 19 16 2 12 15

Output

12

Note

In the first sample array $$$b$$$ is equal to $$${3, 3, 6}$$$, then array $$$c$$$ is equal to $$${3, 3, 6, 6, 9, 12}$$$, so the lower median is $$$6$$$.

In the second sample $$$b$$$ is $$${8, 8, 8}$$$, $$$c$$$ is $$${8, 8, 8, 16, 16, 24}$$$, so the lower median is $$$8$$$.

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Aug/02/2021 06:16:20 (h2).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|