Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

No tag edit access

The problem statement has recently been changed. View the changes.

×
F. Balanced Domino Placements

time limit per test

2 secondsmemory limit per test

512 megabytesinput

standard inputoutput

standard outputConsider a square grid with $$$h$$$ rows and $$$w$$$ columns with some dominoes on it. Each domino covers exactly two cells of the grid that share a common side. Every cell is covered by at most one domino.

Let's call a placement of dominoes on the grid perfectly balanced if no row and no column contains a pair of cells covered by two different dominoes. In other words, every row and column may contain no covered cells, one covered cell, or two covered cells that belong to the same domino.

You are given a perfectly balanced placement of dominoes on a grid. Find the number of ways to place zero or more extra dominoes on this grid to keep the placement perfectly balanced. Output this number modulo $$$998\,244\,353$$$.

Input

The first line contains three integers $$$h$$$, $$$w$$$, and $$$n$$$ ($$$1 \le h, w \le 3600$$$; $$$0 \le n \le 2400$$$), denoting the dimensions of the grid and the number of already placed dominoes. The rows are numbered from $$$1$$$ to $$$h$$$, and the columns are numbered from $$$1$$$ to $$$w$$$.

Each of the next $$$n$$$ lines contains four integers $$$r_{i, 1}, c_{i, 1}, r_{i, 2}, c_{i, 2}$$$ ($$$1 \le r_{i, 1} \le r_{i, 2} \le h$$$; $$$1 \le c_{i, 1} \le c_{i, 2} \le w$$$), denoting the row id and the column id of the cells covered by the $$$i$$$-th domino. Cells $$$(r_{i, 1}, c_{i, 1})$$$ and $$$(r_{i, 2}, c_{i, 2})$$$ are distinct and share a common side.

The given domino placement is perfectly balanced.

Output

Output the number of ways to place zero or more extra dominoes on the grid to keep the placement perfectly balanced, modulo $$$998\,244\,353$$$.

Examples

Input

5 7 2 3 1 3 2 4 4 4 5

Output

8

Input

5 4 2 1 2 2 2 4 3 4 4

Output

1

Input

23 42 0

Output

102848351

Note

In the first example, the initial grid looks like this:

Here are $$$8$$$ ways to place zero or more extra dominoes to keep the placement perfectly balanced:

In the second example, the initial grid looks like this:

No extra dominoes can be placed here.

Codeforces (c) Copyright 2010-2022 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: May/18/2022 07:24:10 (f1).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|