Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

No tag edit access

C. Frog Jumps

time limit per test

2 secondsmemory limit per test

256 megabytesinput

standard inputoutput

standard outputThere is a frog staying to the left of the string $$$s = s_1 s_2 \ldots s_n$$$ consisting of $$$n$$$ characters (to be more precise, the frog initially stays at the cell $$$0$$$). Each character of $$$s$$$ is either 'L' or 'R'. It means that if the frog is staying at the $$$i$$$-th cell and the $$$i$$$-th character is 'L', the frog can jump only to the left. If the frog is staying at the $$$i$$$-th cell and the $$$i$$$-th character is 'R', the frog can jump only to the right. The frog can jump only to the right from the cell $$$0$$$.

Note that the frog can jump into the same cell twice and can perform as many jumps as it needs.

The frog wants to reach the $$$n+1$$$-th cell. The frog chooses some positive integer value $$$d$$$ before the first jump (and cannot change it later) and jumps by no more than $$$d$$$ cells at once. I.e. if the $$$i$$$-th character is 'L' then the frog can jump to any cell in a range $$$[max(0, i - d); i - 1]$$$, and if the $$$i$$$-th character is 'R' then the frog can jump to any cell in a range $$$[i + 1; min(n + 1; i + d)]$$$.

The frog doesn't want to jump far, so your task is to find the minimum possible value of $$$d$$$ such that the frog can reach the cell $$$n+1$$$ from the cell $$$0$$$ if it can jump by no more than $$$d$$$ cells at once. It is guaranteed that it is always possible to reach $$$n+1$$$ from $$$0$$$.

You have to answer $$$t$$$ independent test cases.

Input

The first line of the input contains one integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases.

The next $$$t$$$ lines describe test cases. The $$$i$$$-th test case is described as a string $$$s$$$ consisting of at least $$$1$$$ and at most $$$2 \cdot 10^5$$$ characters 'L' and 'R'.

It is guaranteed that the sum of lengths of strings over all test cases does not exceed $$$2 \cdot 10^5$$$ ($$$\sum |s| \le 2 \cdot 10^5$$$).

Output

For each test case, print the answer — the minimum possible value of $$$d$$$ such that the frog can reach the cell $$$n+1$$$ from the cell $$$0$$$ if it jumps by no more than $$$d$$$ at once.

Example

Input

6 LRLRRLL L LLR RRRR LLLLLL R

Output

3 2 3 1 7 1

Note

The picture describing the first test case of the example and one of the possible answers:

In the second test case of the example, the frog can only jump directly from $$$0$$$ to $$$n+1$$$.

In the third test case of the example, the frog can choose $$$d=3$$$, jump to the cell $$$3$$$ from the cell $$$0$$$ and then to the cell $$$4$$$ from the cell $$$3$$$.

In the fourth test case of the example, the frog can choose $$$d=1$$$ and jump $$$5$$$ times to the right.

In the fifth test case of the example, the frog can only jump directly from $$$0$$$ to $$$n+1$$$.

In the sixth test case of the example, the frog can choose $$$d=1$$$ and jump $$$2$$$ times to the right.

Codeforces (c) Copyright 2010-2020 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Sep/21/2020 17:50:22 (h1).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|