Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

No tag edit access

The problem statement has recently been changed. View the changes.

×
E. Rock, Paper, Scissors

time limit per test

1 secondmemory limit per test

256 megabytesinput

standard inputoutput

standard outputAlice and Bob have decided to play the game "Rock, Paper, Scissors".

The game consists of several rounds, each round is independent of each other. In each round, both players show one of the following things at the same time: rock, paper or scissors. If both players showed the same things then the round outcome is a draw. Otherwise, the following rules applied:

- if one player showed rock and the other one showed scissors, then the player who showed rock is considered the winner and the other one is considered the loser;
- if one player showed scissors and the other one showed paper, then the player who showed scissors is considered the winner and the other one is considered the loser;
- if one player showed paper and the other one showed rock, then the player who showed paper is considered the winner and the other one is considered the loser.

Alice and Bob decided to play exactly $$$n$$$ rounds of the game described above. Alice decided to show rock $$$a_1$$$ times, show scissors $$$a_2$$$ times and show paper $$$a_3$$$ times. Bob decided to show rock $$$b_1$$$ times, show scissors $$$b_2$$$ times and show paper $$$b_3$$$ times. Though, both Alice and Bob did not choose the sequence in which they show things. It is guaranteed that $$$a_1 + a_2 + a_3 = n$$$ and $$$b_1 + b_2 + b_3 = n$$$.

Your task is to find two numbers:

- the minimum number of round Alice can win;
- the maximum number of rounds Alice can win.

Input

The first line of the input contains one integer $$$n$$$ ($$$1 \le n \le 10^{9}$$$) — the number of rounds.

The second line of the input contains three integers $$$a_1, a_2, a_3$$$ ($$$0 \le a_i \le n$$$) — the number of times Alice will show rock, scissors and paper, respectively. It is guaranteed that $$$a_1 + a_2 + a_3 = n$$$.

The third line of the input contains three integers $$$b_1, b_2, b_3$$$ ($$$0 \le b_j \le n$$$) — the number of times Bob will show rock, scissors and paper, respectively. It is guaranteed that $$$b_1 + b_2 + b_3 = n$$$.

Output

Print two integers: the minimum and the maximum number of rounds Alice can win.

Examples

Input

2 0 1 1 1 1 0

Output

0 1

Input

15 5 5 5 5 5 5

Output

0 15

Input

3 0 0 3 3 0 0

Output

3 3

Input

686 479 178 29 11 145 530

Output

22 334

Input

319 10 53 256 182 103 34

Output

119 226

Note

In the first example, Alice will not win any rounds if she shows scissors and then paper and Bob shows rock and then scissors. In the best outcome, Alice will win one round if she shows paper and then scissors, and Bob shows rock and then scissors.

In the second example, Alice will not win any rounds if Bob shows the same things as Alice each round.

In the third example, Alice always shows paper and Bob always shows rock so Alice will win all three rounds anyway.

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: May/07/2021 22:54:25 (h2).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|