Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

No tag edit access

The problem statement has recently been changed. View the changes.

×
C. Not Assigning

time limit per test

1.5 secondsmemory limit per test

256 megabytesinput

standard inputoutput

standard outputYou are given a tree of $$$n$$$ vertices numbered from $$$1$$$ to $$$n$$$, with edges numbered from $$$1$$$ to $$$n-1$$$. A tree is a connected undirected graph without cycles. You have to assign integer weights to each edge of the tree, such that the resultant graph is a prime tree.

A prime tree is a tree where the weight of every path consisting of one or two edges is prime. A path should not visit any vertex twice. The weight of a path is the sum of edge weights on that path.

Consider the graph below. It is a prime tree as the weight of every path of two or less edges is prime. For example, the following path of two edges: $$$2 \to 1 \to 3$$$ has a weight of $$$11 + 2 = 13$$$, which is prime. Similarly, the path of one edge: $$$4 \to 3$$$ has a weight of $$$5$$$, which is also prime.

Print any valid assignment of weights such that the resultant tree is a prime tree. If there is no such assignment, then print $$$-1$$$. It can be proven that if a valid assignment exists, one exists with weights between $$$1$$$ and $$$10^5$$$ as well.

Input

The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 10^4$$$) — the number of test cases. The description of the test cases follows.

The first line of each test case contains one integer $$$n$$$ ($$$2 \leq n \leq 10^5$$$) — the number of vertices in the tree.

Then, $$$n-1$$$ lines follow. The $$$i$$$-th line contains two integers $$$u$$$ and $$$v$$$ ($$$1 \leq u, v \leq n$$$) denoting that edge number $$$i$$$ is between vertices $$$u$$$ and $$$v$$$. It is guaranteed that the edges form a tree.

It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$10^5$$$.

Output

For each test case, if a valid assignment exists, then print a single line containing $$$n-1$$$ integers $$$a_1, a_2, \dots, a_{n-1}$$$ ($$$1 \leq a_i \le 10^5$$$), where $$$a_i$$$ denotes the weight assigned to the edge numbered $$$i$$$. Otherwise, print $$$-1$$$.

If there are multiple solutions, you may print any.

Example

Input

3 2 1 2 4 1 3 4 3 2 1 7 1 2 1 3 3 4 3 5 6 2 7 2

Output

17 2 5 11 -1

Note

For the first test case, there are only two paths having one edge each: $$$1 \to 2$$$ and $$$2 \to 1$$$, both having a weight of $$$17$$$, which is prime.

The second test case is described in the statement.

It can be proven that no such assignment exists for the third test case.

Codeforces (c) Copyright 2010-2022 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: May/16/2022 08:20:02 (k2).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|