Codeforces Global Round 19 |
---|

Finished |

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

binary search

brute force

implementation

*2100

No tag edit access

The problem statement has recently been changed. View the changes.

×
E. Best Pair

time limit per test

2 secondsmemory limit per test

256 megabytesinput

standard inputoutput

standard outputYou are given an array $$$a$$$ of length $$$n$$$. Let $$$cnt_x$$$ be the number of elements from the array which are equal to $$$x$$$. Let's also define $$$f(x, y)$$$ as $$$(cnt_x + cnt_y) \cdot (x + y)$$$.

Also you are given $$$m$$$ bad pairs $$$(x_i, y_i)$$$. Note that if $$$(x, y)$$$ is a bad pair, then $$$(y, x)$$$ is also bad.

Your task is to find the maximum value of $$$f(u, v)$$$ over all pairs $$$(u, v)$$$, such that $$$u \neq v$$$, that this pair is not bad, and also that $$$u$$$ and $$$v$$$ each occur in the array $$$a$$$. It is guaranteed that such a pair exists.

Input

The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10\,000$$$) — the number of test cases.

The first line of each test case contains two integers $$$n$$$ and $$$m$$$ ($$$2 \le n \le 3 \cdot 10^5$$$, $$$0 \le m \le 3 \cdot 10^5$$$) — the length of the array and the number of bad pairs.

The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$) — elements of the array.

The $$$i$$$-th of the next $$$m$$$ lines contains two integers $$$x_i$$$ and $$$y_i$$$ ($$$1 \le x_i < y_i \le 10^9$$$), which represent a bad pair. It is guaranteed that no bad pair occurs twice in the input. It is also guaranteed that $$$cnt_{x_i} > 0$$$ and $$$cnt_{y_i} > 0$$$.

It is guaranteed that for each test case there is a pair of integers $$$(u, v)$$$, $$$u \ne v$$$, that is not bad, and such that both of these numbers occur in $$$a$$$.

It is guaranteed that the total sum of $$$n$$$ and the total sum of $$$m$$$ don't exceed $$$3 \cdot 10^5$$$.

Output

For each test case print a single integer — the answer to the problem.

Example

Input

3 6 1 6 3 6 7 3 3 3 6 2 0 3 4 7 4 1 2 2 3 1 5 1 1 5 3 5 1 3 2 5

Output

40 14 15

Note

In the first test case $$$3$$$, $$$6$$$, $$$7$$$ occur in the array.

- $$$f(3, 6) = (cnt_3 + cnt_6) \cdot (3 + 6) = (3 + 2) \cdot (3 + 6) = 45$$$. But $$$(3, 6)$$$ is bad so we ignore it.
- $$$f(3, 7) = (cnt_3 + cnt_7) \cdot (3 + 7) = (3 + 1) \cdot (3 + 7) = 40$$$.
- $$$f(6, 7) = (cnt_6 + cnt_7) \cdot (6 + 7) = (2 + 1) \cdot (6 + 7) = 39$$$.

The answer to the problem is $$$\max(40, 39) = 40$$$.

Codeforces (c) Copyright 2010-2023 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Jun/06/2023 05:56:30 (k3).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|