Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

data structures

dp

matrices

shortest paths

*2600

No tag edit access

The problem statement has recently been changed. View the changes.

×
E. Labyrinth Adventures

time limit per test

6 secondsmemory limit per test

512 megabytesinput

standard inputoutput

standard outputYou found a map of a weirdly shaped labyrinth. The map is a grid, consisting of $$$n$$$ rows and $$$n$$$ columns. The rows of the grid are numbered from $$$1$$$ to $$$n$$$ from bottom to top. The columns of the grid are numbered from $$$1$$$ to $$$n$$$ from left to right.

The labyrinth has $$$n$$$ layers. The first layer is the bottom left corner (cell $$$(1, 1)$$$). The second layer consists of all cells that are in the grid and adjacent to the first layer by a side or a corner. The third layer consists of all cells that are in the grid and adjacent to the second layer by a side or a corner. And so on.

The labyrinth with $$$5$$$ layers, for example, is shaped as follows:

The layers are separated from one another with walls. However, there are doors in these walls.

Each layer (except for layer $$$n$$$) has exactly two doors to the next layer. One door is placed on the top wall of the layer and another door is placed on the right wall of the layer. For each layer from $$$1$$$ to $$$n-1$$$ you are given positions of these two doors. The doors can be passed in both directions: either from layer $$$i$$$ to layer $$$i+1$$$ or from layer $$$i+1$$$ to layer $$$i$$$.

If you are standing in some cell, you can move to an adjacent by a side cell if a wall doesn't block your move (e.g. you can't move to a cell in another layer if there is no door between the cells).

Now you have $$$m$$$ queries of sort: what's the minimum number of moves one has to make to go from cell $$$(x_1, y_1)$$$ to cell $$$(x_2, y_2)$$$.

Input

The first line contains a single integer $$$n$$$ ($$$2 \le n \le 10^5$$$) — the number of layers in the labyrinth.

The $$$i$$$-th of the next $$$n-1$$$ lines contains four integers $$$d_{1,x}, d_{1,y}, d_{2,x}$$$ and $$$d_{2,y}$$$ ($$$1 \le d_{1,x}, d_{1,y}, d_{2,x}, d_{2,y} \le n$$$) — the coordinates of the doors. Both cells are on the $$$i$$$-th layer. The first cell is adjacent to the top wall of the $$$i$$$-th layer by a side — that side is where the door is. The second cell is adjacent to the right wall of the $$$i$$$-th layer by a side — that side is where the door is.

The next line contains a single integer $$$m$$$ ($$$1 \le m \le 2 \cdot 10^5$$$) — the number of queries.

The $$$j$$$-th of the next $$$m$$$ lines contains four integers $$$x_1, y_1, x_2$$$ and $$$y_2$$$ ($$$1 \le x_1, y_1, x_2, y_2 \le n$$$) — the coordinates of the cells in the $$$j$$$-th query.

Output

For each query, print a single integer — the minimum number of moves one has to make to go from cell $$$(x_1, y_1)$$$ to cell $$$(x_2, y_2)$$$.

Examples

Input

2 1 1 1 1 10 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 2 1 2 1 2 1 2 2 1 1 2 2 2 2 1 2 1 2 1 2 2 2 2 2 2

Output

0 1 1 2 0 2 1 0 1 0

Input

4 1 1 1 1 2 1 2 2 3 2 1 3 5 2 4 4 3 4 4 3 3 1 2 3 3 2 2 4 4 1 4 2 3

Output

3 4 3 6 2

Note

Here is the map of the labyrinth from the second example. The doors are marked red.

Codeforces (c) Copyright 2010-2024 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Apr/21/2024 01:21:50 (h1).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|