Codeforces Round 803 (Div. 2) |
---|

Finished |

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

brute force

combinatorics

greedy

sortings

trees

two pointers

*2300

No tag edit access

The problem statement has recently been changed. View the changes.

×
E. PermutationForces II

time limit per test

1 secondmemory limit per test

256 megabytesinput

standard inputoutput

standard outputYou are given a permutation $$$a$$$ of length $$$n$$$. Recall that permutation is an array consisting of $$$n$$$ distinct integers from $$$1$$$ to $$$n$$$ in arbitrary order.

You have a strength of $$$s$$$ and perform $$$n$$$ moves on the permutation $$$a$$$. The $$$i$$$-th move consists of the following:

- Pick two integers $$$x$$$ and $$$y$$$ such that $$$i \leq x \leq y \leq \min(i+s,n)$$$, and swap the positions of the integers $$$x$$$ and $$$y$$$ in the permutation $$$a$$$. Note that you can select $$$x=y$$$ in the operation, in which case no swap will occur.

You want to turn $$$a$$$ into another permutation $$$b$$$ after $$$n$$$ moves. However, some elements of $$$b$$$ are missing and are replaced with $$$-1$$$ instead. Count the number of ways to replace each $$$-1$$$ in $$$b$$$ with some integer from $$$1$$$ to $$$n$$$ so that $$$b$$$ is a permutation and it is possible to turn $$$a$$$ into $$$b$$$ with a strength of $$$s$$$.

Since the answer can be large, output it modulo $$$998\,244\,353$$$.

Input

The input consists of multiple test cases. The first line contains an integer $$$t$$$ ($$$1 \leq t \leq 1000$$$) — the number of test cases. The description of the test cases follows.

The first line of each test case contains two integers $$$n$$$ and $$$s$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq s \leq n$$$) — the size of the permutation and your strength, respectively.

The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le n$$$) — the elements of $$$a$$$. All elements of $$$a$$$ are distinct.

The third line of each test case contains $$$n$$$ integers $$$b_1, b_2, \ldots, b_n$$$ ($$$1 \le b_i \le n$$$ or $$$b_i = -1$$$) — the elements of $$$b$$$. All elements of $$$b$$$ that are not equal to $$$-1$$$ are distinct.

It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.

Output

For each test case, output a single integer — the number of ways to fill up the permutation $$$b$$$ so that it is possible to turn $$$a$$$ into $$$b$$$ using a strength of $$$s$$$, modulo $$$998\,244\,353$$$.

Example

Input

63 12 1 33 -1 -13 22 1 33 -1 -14 11 4 3 24 3 1 26 44 2 6 3 1 56 1 5 -1 3 -17 41 3 6 2 7 4 52 5 -1 -1 -1 4 -114 141 2 3 4 5 6 7 8 9 10 11 12 13 14-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Output

1 2 0 2 12 331032489

Note

In the first test case, $$$a=[2,1,3]$$$. There are two possible ways to fill out the $$$-1$$$s in $$$b$$$ to make it a permutation: $$$[3,1,2]$$$ or $$$[3,2,1]$$$. We can make $$$a$$$ into $$$[3,1,2]$$$ with a strength of $$$1$$$ as follows: $$$$$$[2,1,3] \xrightarrow[x=1,\,y=1]{} [2,1,3] \xrightarrow[x=2,\,y=3]{} [3,1,2] \xrightarrow[x=3,\,y=3]{} [3,1,2].$$$$$$ It can be proven that it is impossible to make $$$[2,1,3]$$$ into $$$[3,2,1]$$$ with a strength of $$$1$$$. Thus only one permutation $$$b$$$ satisfies the constraints, so the answer is $$$1$$$.

In the second test case, $$$a$$$ and $$$b$$$ the same as the previous test case, but we now have a strength of $$$2$$$. We can make $$$a$$$ into $$$[3,2,1]$$$ with a strength of $$$2$$$ as follows: $$$$$$[2,1,3] \xrightarrow[x=1,\,y=3]{} [2,3,1] \xrightarrow[x=2,\,y=3]{} [3,2,1] \xrightarrow[x=3,\,y=3]{} [3,2,1].$$$$$$ We can still make $$$a$$$ into $$$[3,1,2]$$$ using a strength of $$$1$$$ as shown in the previous test case, so the answer is $$$2$$$.

In the third test case, there is only one permutation $$$b$$$. It can be shown that it is impossible to turn $$$a$$$ into $$$b$$$, so the answer is $$$0$$$.

Codeforces (c) Copyright 2010-2024 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Jul/24/2024 03:56:47 (i2).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|