Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

No tag edit access

The problem statement has recently been changed. View the changes.

×
A. Round Down the Price

time limit per test

1 secondmemory limit per test

256 megabytesinput

standard inputoutput

standard outputAt the store, the salespeople want to make all prices round.

In this problem, a number that is a power of $$$10$$$ is called a round number. For example, the numbers $$$10^0 = 1$$$, $$$10^1 = 10$$$, $$$10^2 = 100$$$ are round numbers, but $$$20$$$, $$$110$$$ and $$$256$$$ are not round numbers.

So, if an item is worth $$$m$$$ bourles (the value of the item is not greater than $$$10^9$$$), the sellers want to change its value to the nearest round number that is not greater than $$$m$$$. They ask you: by how many bourles should you decrease the value of the item to make it worth exactly $$$10^k$$$ bourles, where the value of $$$k$$$ — is the maximum possible ($$$k$$$ — any non-negative integer).

For example, let the item have a value of $$$178$$$-bourles. Then the new price of the item will be $$$100$$$, and the answer will be $$$178-100=78$$$.

Input

The first line of input data contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases .

Each test case is a string containing a single integer $$$m$$$ ($$$1 \le m \le 10^9$$$) — the price of the item.

Output

For each test case, output on a separate line a single integer $$$d$$$ ($$$0 \le d < m$$$) such that if you reduce the cost of the item by $$$d$$$ bourles, the cost of the item will be the maximal possible round number. More formally: $$$m - d = 10^k$$$, where $$$k$$$ — the maximum possible non-negative integer.

Example

Input

712178209999999999000987654321

Output

0 1 78 10 899999999 8000 887654321

Note

In the example:

- $$$1 - 0 = 10^0$$$,
- $$$2 - 1 = 10^0$$$,
- $$$178 - 78 = 10^2$$$,
- $$$20 - 10 = 10^1$$$,
- $$$999999999 - 899999999 = 10^8$$$,
- $$$9000 - 8000 = 10^3$$$,
- $$$987654321 - 887654321 = 10^8$$$.

Note that in each test case, we get the maximum possible round number.

Codeforces (c) Copyright 2010-2023 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Feb/07/2023 22:10:05 (g1).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|