Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

No tag edit access

The problem statement has recently been changed. View the changes.

×
A. Parallel Projection

time limit per test

1 secondmemory limit per test

512 megabytesinput

standard inputoutput

standard outputVika's house has a room in a shape of a rectangular parallelepiped (also known as a rectangular cuboid). Its floor is a rectangle of size $$$w \times d$$$, and the ceiling is right above at the constant height of $$$h$$$. Let's introduce a coordinate system on the floor so that its corners are at points $$$(0, 0)$$$, $$$(w, 0)$$$, $$$(w, d)$$$, and $$$(0, d)$$$.

A laptop is standing on the floor at point $$$(a, b)$$$. A projector is hanging on the ceiling right above point $$$(f, g)$$$. Vika wants to connect the laptop and the projector with a cable in such a way that the cable always goes along the walls, ceiling, or floor (i. e. does not go inside the cuboid). Additionally, the cable should always run parallel to one of the cuboid's edges (i. e. it can not go diagonally).

What is the minimum length of a cable that can connect the laptop to the projector?

Input

Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). The description of the test cases follows.

The first line of each test case contains three integers $$$w$$$, $$$d$$$, and $$$h$$$ ($$$2 \le w, d, h \le 1000$$$) — the size of the room.

The second line contains four integers $$$a$$$, $$$b$$$, $$$f$$$, $$$g$$$ ($$$0 < a, f < w$$$; $$$0 < b, g < d$$$): the laptop is located on the floor at point $$$(a, b)$$$, while the projector is hanging on the ceiling right above point $$$(f, g)$$$.

Output

For each test case, print a single integer — the minimum length of the cable connecting the laptop and the projector that runs only along the walls, floor, and ceiling parallel to cuboid's edges.

Example

Input

555 20 2923 10 18 320 10 51 5 2 515 15 47 13 10 102 1000 21 1 1 99910 4 107 1 2 1

Output

47 8 14 1002 17

Note

The picture in the statement illustrates the first test case.

Codeforces (c) Copyright 2010-2023 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Feb/08/2023 19:08:38 (i2).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|