Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

binary search

brute force

data structures

greedy

trees

*3500

No tag edit access

The problem statement has recently been changed. View the changes.

×
G. Clubstep

time limit per test

3 secondsmemory limit per test

1024 megabytesinput

standard inputoutput

standard outputThere is an extremely hard video game that is one of Chaneka's favourite video games. One of the hardest levels in the game is called Clubstep. Clubstep consists of $$$n$$$ parts, numbered from $$$1$$$ to $$$n$$$. Chaneka has practised the level a good amount, so currently, her familiarity value with each part $$$i$$$ is $$$a_i$$$.

After this, Chaneka can do several (possibly zero) attempts on Clubstep. In each attempt, she dies on one of the $$$n$$$ parts. If an attempt dies on part $$$p$$$, that means it only successfully passes through every part $$$k$$$ for all $$$1 \leq k \leq p-1$$$ and it does not reach any part $$$k$$$ for all $$$p+1 \leq k \leq n$$$. An attempt that dies on part $$$p$$$ takes $$$p$$$ seconds.

It is known that Chaneka improves much more on the part she dies on than anything else. It is also known that during an attempt, Chaneka does not get to practise that much on the parts she does not reach. So, the effect of an attempt that dies on part $$$p$$$ is as follows:

- Chaneka's familiarity value with part $$$p$$$ increases by $$$2$$$.
- Chaneka's familiarity value with each part $$$k$$$ for all $$$1 \leq k \leq p-1$$$ increases by $$$1$$$.

Note that each question is independent, so the attempt Chaneka does on a question does not affect the familiarity values of any other questions.

Input

The first line contains a single integer $$$n$$$ ($$$1 \leq n \leq 3\cdot10^5$$$) — the number of parts in Clubstep.

The second line contains $$$n$$$ integers $$$a_1,a_2,a_3,\ldots,a_n$$$ ($$$1\leq a_i\leq10^9$$$) — Chaneka's familiarity value with each part.

The third line contains a single integer $$$q$$$ ($$$1\leq q\leq3\cdot10^5$$$) — the number of questions.

The $$$j$$$-th of the next $$$q$$$ lines contains three integers $$$l_j$$$, $$$r_j$$$, and $$$x_j$$$ ($$$1\leq l_j\leq r_j\leq n$$$; $$$1\leq x_j\leq10^9$$$) — the description of the $$$j$$$-th question.

Output

Output $$$q$$$ lines with an integer in each line. The integer in the $$$j$$$-th line represents the minimum time (in seconds) for Chaneka to make it such that the familiarity value for every part $$$p$$$ ($$$l_j \leq p \leq r_j$$$) is at least $$$x_j$$$.

Example

Input

5 1 3 2 1 2 3 1 5 5 2 4 5 3 3 1

Output

15 11 0

Note

For the $$$1$$$-st question, one possible strategy is to do the following:

- Do $$$1$$$ attempt that dies on part $$$1$$$. This takes $$$1$$$ second. The familiarity values become $$$[3, 3, 2, 1, 2]$$$.
- Do $$$1$$$ attempt that dies on part $$$4$$$. This takes $$$4$$$ seconds. The familiarity values become $$$[4, 4, 3, 3, 2]$$$.
- Do $$$2$$$ attempts that die on part $$$5$$$. This takes $$$10$$$ seconds. The familiarity values become $$$[6, 6, 5, 5, 6]$$$.

The total time taken (in seconds) is $$$1+4+10=15$$$.

For the $$$2$$$-nd question, one possible strategy is to do the following:

- Do $$$1$$$ attempt that dies on part $$$3$$$. This takes $$$3$$$ seconds. The familiarity values become $$$[2, 4, 4, 1, 2]$$$.
- Do $$$2$$$ attempts that die on part $$$4$$$. This takes $$$8$$$ seconds. The familiarity values become $$$[4, 6, 6, 5, 2]$$$.

The total time taken (in seconds) is $$$3+8=11$$$.

Codeforces (c) Copyright 2010-2023 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Dec/02/2023 04:52:32 (i1).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|