Codeforces Round 936 (Div. 2) |
---|

Finished |

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

greedy

implementation

sortings

*800

No tag edit access

The problem statement has recently been changed. View the changes.

×
A. Median of an Array

time limit per test

1 secondmemory limit per test

256 megabytesinput

standard inputoutput

standard outputYou are given an array $$$a$$$ of $$$n$$$ integers.

The median of an array $$$q_1, q_2, \ldots, q_k$$$ is the number $$$p_{\lceil \frac{k}{2} \rceil}$$$, where $$$p$$$ is the array $$$q$$$ sorted in non-decreasing order. For example, the median of the array $$$[9, 5, 1, 2, 6]$$$ is $$$5$$$, as in the sorted array $$$[1, 2, 5, 6, 9]$$$, the number at index $$$\lceil \frac{5}{2} \rceil = 3$$$ is $$$5$$$, and the median of the array $$$[9, 2, 8, 3]$$$ is $$$3$$$, as in the sorted array $$$[2, 3, 8, 9]$$$, the number at index $$$\lceil \frac{4}{2} \rceil = 2$$$ is $$$3$$$.

You are allowed to choose an integer $$$i$$$ ($$$1 \le i \le n$$$) and increase $$$a_i$$$ by $$$1$$$ in one operation.

Your task is to find the minimum number of operations required to increase the median of the array.

Note that the array $$$a$$$ may not necessarily contain distinct numbers.

Input

Each test consists of multiple test cases. The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. Then follows the description of the test cases.

The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 10^5$$$) — the length of the array $$$a$$$.

The second line of each test case contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$) — the array $$$a$$$.

It is guaranteed that the sum of the values of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.

Output

For each test case, output a single integer — the minimum number of operations required to increase the median of the array.

Example

Input

832 2 847 3 3 11100000000055 5 5 4 562 1 2 3 1 421 221 145 5 5 5

Output

1 2 1 3 2 1 2 3

Note

In the first test case, you can apply one operation to the first number and obtain the array $$$[3, 2, 8]$$$, the median of this array is $$$3$$$, as it is the number at index $$$\lceil \frac{3}{2} \rceil = 2$$$ in the non-decreasing sorted array $$$[2, 3, 8]$$$. The median of the original array $$$[2, 2, 8]$$$ is $$$2$$$, as it is the number at index $$$\lceil \frac{3}{2} \rceil = 2$$$ in the non-decreasing sorted array $$$[2, 2, 8]$$$. Thus, the median increased ($$$3 > 2$$$) in just one operation.

In the fourth test case, you can apply one operation to each of the numbers at indices $$$1, 2, 3$$$ and obtain the array $$$[6, 6, 6, 4, 5]$$$, the median of this array is $$$6$$$, as it is the number at index $$$\lceil \frac{5}{2} \rceil = 3$$$ in the non-decreasing sorted array $$$[4, 5, 6, 6, 6]$$$. The median of the original array $$$[5, 5, 5, 4, 5]$$$ is $$$5$$$, as it is the number at index $$$\lceil \frac{5}{2} \rceil = 2$$$ in the non-decreasing sorted array $$$[4, 5, 5, 5, 5]$$$. Thus, the median increased ($$$6 > 5$$$) in three operations. It can be shown that this is the minimum possible number of operations.

In the fifth test case, you can apply one operation to each of the numbers at indices $$$1, 3$$$ and obtain the array $$$[3, 1, 3, 3, 1, 4]$$$, the median of this array is $$$3$$$, as it is the number at index $$$\lceil \frac{6}{2} \rceil = 3$$$ in the non-decreasing sorted array $$$[1, 1, 3, 3, 3, 4]$$$. The median of the original array $$$[2, 1, 2, 3, 1, 4]$$$ is $$$2$$$, as it is the number at index $$$\lceil \frac{6}{2} \rceil = 3$$$ in the non-decreasing sorted array $$$[1, 1, 2, 2, 3, 4]$$$. Thus, the median increased ($$$3 > 2$$$) in two operations. It can be shown that this is the minimum possible number of operations.

Codeforces (c) Copyright 2010-2024 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Jun/16/2024 03:12:19 (g1).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|