B. Restoration of the Permutation
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Let A = {a 1, a 2, ..., a n} be any permutation of the first n natural numbers {1, 2, ..., n}. You are given a positive integer k and another sequence B = {b 1, b 2, ..., b n}, where b i is the number of elements a j in A to the left of the element a t = i such that a j ≥ (i + k).

For example, if n = 5, a possible A is {5, 1, 4, 2, 3}. For k = 2, B is given by {1, 2, 1, 0, 0}. But if k = 3, then B = {1, 1, 0, 0, 0}.

For two sequences X = {x 1, x 2, ..., x n} and Y = {y 1, y 2, ..., y n}, let i-th elements be the first elements such that x i ≠ y i. If x i < y i, then X is lexicographically smaller than Y, while if x i > y i, then X is lexicographically greater than Y.

Given n, k and B, you need to determine the lexicographically smallest A.

Input

The first line contains two space separated integers n and k (1 ≤ n ≤ 1000, 1 ≤ k ≤ n). On the second line are n integers specifying the values of B = {b 1, b 2, ..., b n}.

Output

Print on a single line n integers of A = {a 1, a 2, ..., a n} such that A is lexicographically minimal. It is guaranteed that the solution exists.

Examples
Input
5 2
1 2 1 0 0
Output
4 1 5 2 3 
Input
4 2
1 0 0 0
Output
2 3 1 4