Perhaps today and/or tomorrow due to a power outage there may be disruptions in the work of Codeforces and Polygon. Please do not plan any important events during this time. If there are details or the exact time, we will definitely publish them. Estimated time of maintenance: from 2 Aug, 16:00 (UTC) to 2 Aug, 20:00 (UTC). ×

C. Bipartite Segments
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given an undirected graph with n vertices. There are no edge-simple cycles with the even length in it. In other words, there are no cycles of even length that pass each edge at most once. Let's enumerate vertices from 1 to n.

You have to answer q queries. Each query is described by a segment of vertices [l; r], and you have to count the number of its subsegments [x; y] (l ≤ x ≤ y ≤ r), such that if we delete all vertices except the segment of vertices [x; y] (including x and y) and edges between them, the resulting graph is bipartite.

Input

The first line contains two integers n and m (1 ≤ n ≤ 3·105, 1 ≤ m ≤ 3·105) — the number of vertices and the number of edges in the graph.

The next m lines describe edges in the graph. The i-th of these lines contains two integers ai and bi (1 ≤ ai, bi ≤ n; ai ≠ bi), denoting an edge between vertices ai and bi. It is guaranteed that this graph does not contain edge-simple cycles of even length.

The next line contains a single integer q (1 ≤ q ≤ 3·105) — the number of queries.

The next q lines contain queries. The i-th of these lines contains two integers li and ri (1 ≤ li ≤ ri ≤ n) — the query parameters.

Output

Print q numbers, each in new line: the i-th of them should be the number of subsegments [x; y] (li ≤ x ≤ y ≤ ri), such that the graph that only includes vertices from segment [x; y] and edges between them is bipartite.

Examples
Input
6 6
1 2
2 3
3 1
4 5
5 6
6 4
3
1 3
4 6
1 6
Output
5
5
14
Input
8 9
1 2
2 3
3 1
4 5
5 6
6 7
7 8
8 4
7 2
3
1 8
1 4
3 8
Output
27
8
19
Note

The first example is shown on the picture below:

For the first query, all subsegments of [1; 3], except this segment itself, are suitable.

For the first query, all subsegments of [4; 6], except this segment itself, are suitable.

For the third query, all subsegments of [1; 6] are suitable, except [1; 3], [1; 4], [1; 5], [1; 6], [2; 6], [3; 6], [4; 6].

The second example is shown on the picture below: