B. Equations of Mathematical Magic
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
Colossal! — exclaimed Hawk-nose. — A programmer! That's exactly what we are looking for.
Arkadi and Boris Strugatsky. Monday starts on Saturday

Reading the book "Equations of Mathematical Magic" Roman Oira-Oira and Cristobal Junta found an interesting equation: $a - (a \oplus x) - x = 0$ for some given $a$, where $\oplus$ stands for a bitwise exclusive or (XOR) of two integers (this operation is denoted as ^ or xor in many modern programming languages). Oira-Oira quickly found some $x$, which is the solution of the equation, but Cristobal Junta decided that Oira-Oira's result is not interesting enough, so he asked his colleague how many non-negative solutions of this equation exist. This task turned out to be too difficult for Oira-Oira, so he asks you to help.

Input

Each test contains several possible values of $a$ and your task is to find the number of equation's solution for each of them. The first line contains an integer $t$ ($1 \le t \le 1000$) — the number of these values.

The following $t$ lines contain the values of parameter $a$, each value is an integer from $0$ to $2^{30} - 1$ inclusive.

Output

For each value of $a$ print exactly one integer — the number of non-negative solutions of the equation for the given value of the parameter. Print answers in the same order as values of $a$ appear in the input.

One can show that the number of solutions is always finite.

Example
Input
3021073741823
Output
121073741824
Note

Let's define the bitwise exclusive OR (XOR) operation. Given two integers $x$ and $y$, consider their binary representations (possibly with leading zeroes): $x_k \dots x_2 x_1 x_0$ and $y_k \dots y_2 y_1 y_0$. Here, $x_i$ is the $i$-th bit of the number $x$ and $y_i$ is the $i$-th bit of the number $y$. Let $r = x \oplus y$ be the result of the XOR operation of $x$ and $y$. Then $r$ is defined as $r_k \dots r_2 r_1 r_0$ where:

r_i = \left\{ \begin{aligned} 1, ~ \text{if} ~ x_i \ne y_i \\ 0, ~ \text{if} ~ x_i = y_i \end{aligned} \right.

For the first value of the parameter, only $x = 0$ is a solution of the equation.

For the second value of the parameter, solutions are $x = 0$ and $x = 2$.