F. Greetings
time limit per test
5 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

There are $$$n$$$ people on the number line; the $$$i$$$-th person is at point $$$a_i$$$ and wants to go to point $$$b_i$$$. For each person, $$$a_i < b_i$$$, and the starting and ending points of all people are distinct. (That is, all of the $$$2n$$$ numbers $$$a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$$$ are distinct.)

All the people will start moving simultaneously at a speed of $$$1$$$ unit per second until they reach their final point $$$b_i$$$. When two people meet at the same point, they will greet each other once. How many greetings will there be?

Note that a person can still greet other people even if they have reached their final point.

Input

The first line of the input contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of test cases. The description of test cases follows.

The first line of each test case contains a single integer $$$n$$$ ($$$1 \le n \le 2 \cdot 10^5$$$) — the number of people.

Then $$$n$$$ lines follow, the $$$i$$$-th of which contains two integers $$$a_i$$$ and $$$b_i$$$ ($$$-10^9 \leq a_i < b_i \leq 10^9$$$) — the starting and ending positions of each person.

For each test case, all of the $$$2n$$$ numbers $$$a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$$$ are distinct.

The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.

Output

For each test case, output a single integer denoting the number of greetings that will happen.

Example
Input
5
2
2 3
1 4
6
2 6
3 9
4 5
1 8
7 10
-2 100
4
-10 10
-5 5
-12 12
-13 13
5
-4 9
-2 5
3 4
6 7
8 10
4
1 2
3 4
5 6
7 8
Output
1
9
6
4
0
Note

In the first test case, the two people will meet at point $$$3$$$ and greet each other.