I have a problem finding a strongly connected component of size exactly K in a Tournament Graph. Can someone help me?

Thanks in advance

Thanks in advance

# | User | Rating |
---|---|---|

1 | tourist | 3557 |

2 | Radewoosh | 3468 |

3 | Um_nik | 3429 |

4 | Petr | 3354 |

5 | Benq | 3286 |

6 | mnbvmar | 3280 |

7 | LHiC | 3276 |

8 | wxhtxdy | 3258 |

9 | ecnerwala | 3214 |

10 | yutaka1999 | 3190 |

# | User | Contrib. |
---|---|---|

1 | Errichto | 191 |

2 | Radewoosh | 180 |

3 | tourist | 173 |

4 | antontrygubO_o | 165 |

4 | Vovuh | 165 |

6 | PikMike | 164 |

7 | rng_58 | 160 |

8 | majk | 156 |

9 | Um_nik | 155 |

10 | 300iq | 154 |

I have a problem finding a strongly connected component of size exactly K in a Tournament Graph. Can someone help me?

Thanks in advance

Thanks in advance

↑

↓

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Oct/21/2019 04:11:56 (h3).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|

Thanks for your attention.

Sorry, it seems that the left side of the page is cut off for me, and therefore I cannot really read what the proof is about.

From what I gathered from the page and googled about, if a tournament of size N is strongly connected, then it is vertex pan-cyclic, which means that every vertex in G is part of a cycle of length K for 3<=K<=N. And this proof is done using induction.

However, as the page is cut off, I cannot really read it, and I think I don't really understand what I read too XD. Is it okay for you to explain it here? Is the proof and algorithm similar to the proof and algorithm for finding a hamiltonian path in a tournament? I tried to adapt that algorithm and it seems that I got into some counterexamples.

Hello,

i have implemented code for the problem http://www.spoj.pl/problems/CYCLERUN/ and the complexity is O(N2),but getting TLE. Any idea what is the best complexity for this problem