Could anyone explain to me the proof for such a method of checking whether a number is primitive root or not http://zobayer.blogspot.com/2010/02/primitive-root.html
why should i check only certain numbers to be equal to one or not ?
# | User | Rating |
---|---|---|
1 | Radewoosh | 3759 |
2 | orzdevinwang | 3697 |
3 | jiangly | 3662 |
4 | Benq | 3644 |
5 | -0.5 | 3545 |
6 | ecnerwala | 3505 |
7 | tourist | 3486 |
8 | inaFSTream | 3478 |
9 | maroonrk | 3454 |
10 | Rebelz | 3415 |
# | User | Contrib. |
---|---|---|
1 | adamant | 174 |
2 | awoo | 168 |
3 | nor | 165 |
4 | SecondThread | 163 |
5 | BledDest | 162 |
5 | maroonrk | 162 |
5 | Um_nik | 162 |
8 | -is-this-fft- | 150 |
9 | Geothermal | 146 |
10 | TheScrasse | 143 |
Could anyone explain to me the proof for such a method of checking whether a number is primitive root or not http://zobayer.blogspot.com/2010/02/primitive-root.html
why should i check only certain numbers to be equal to one or not ?
Name |
---|
Since n is a prime, we know that gφ(n) = gn - 1 = 1. We want to know if there is another exponent e < n - 1 such that ge = 1.
Let e be the smallest, positive integer with ge = 1. This means that the exponents that give 1 are exactly 0, e, 2e, 3e, .... This means that e divides n - 1. If e is really smaller than n - 1, then there must exist a prime factor p of n - 1, such that e still divides
. Which means that
.
So it is sufficient to check if any of the terms
, with p prime and p | n - 1, is equal to 1.