No tag edit access

The problem statement has recently been changed. View the changes.

×
C. Number of Pairs

time limit per test

2 secondsmemory limit per test

256 megabytesinput

standard inputoutput

standard outputYou are given an array $$$a$$$ of $$$n$$$ integers. Find the number of pairs $$$(i, j)$$$ ($$$1 \le i < j \le n$$$) where the sum of $$$a_i + a_j$$$ is greater than or equal to $$$l$$$ and less than or equal to $$$r$$$ (that is, $$$l \le a_i + a_j \le r$$$).

For example, if $$$n = 3$$$, $$$a = [5, 1, 2]$$$, $$$l = 4$$$ and $$$r = 7$$$, then two pairs are suitable:

- $$$i=1$$$ and $$$j=2$$$ ($$$4 \le 5 + 1 \le 7$$$);
- $$$i=1$$$ and $$$j=3$$$ ($$$4 \le 5 + 2 \le 7$$$).

Input

The first line contains an integer $$$t$$$ ($$$1 \le t \le 10^4$$$). Then $$$t$$$ test cases follow.

The first line of each test case contains three integers $$$n, l, r$$$ ($$$1 \le n \le 2 \cdot 10^5$$$, $$$1 \le l \le r \le 10^9$$$) — the length of the array and the limits on the sum in the pair.

The second line contains $$$n$$$ integers $$$a_1, a_2, \ldots, a_n$$$ ($$$1 \le a_i \le 10^9$$$).

It is guaranteed that the sum of $$$n$$$ overall test cases does not exceed $$$2 \cdot 10^5$$$.

Output

For each test case, output a single integer — the number of index pairs $$$(i, j)$$$ ($$$i < j$$$), such that $$$l \le a_i + a_j \le r$$$.

Example

Input

4 3 4 7 5 1 2 5 5 8 5 1 2 4 3 4 100 1000 1 1 1 1 5 9 13 2 5 5 1 1

Output

2 7 0 1

Codeforces (c) Copyright 2010-2021 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Jun/13/2021 16:21:07 (i2).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|