Блог пользователя venkycodes

Автор venkycodes, история, 4 года назад, По-английски

Hi. I was wondering if there is any upperbound to the size of euler walk with respect to number of vertices. If yes then what will be that maximizing condition?

  • Проголосовать: нравится
  • 0
  • Проголосовать: не нравится

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Auto comment: topic has been updated by venkycodes (previous revision, new revision, compare).

»
4 года назад, # |
Rev. 3   Проголосовать: нравится +3 Проголосовать: не нравится

` the number of times any node will be added to the euler walk is equal to number of its children every tree + 1 for non leaf nodes and 2 times for leaves (for upper bound we can assume that number of times a node occurs in a euler walk is equal to Nc + 2 where NcI is the number of children of a node I) for each node we can safely assume that every child gives it a single contribution and it has 2 contribution from itself in its frequency in euler path

now every node will be child of exactly one node except root (neglect it for now ) and this will contribute one frequency of its parent so total N(number of nodes in tree ) will be added to the euler vector size, and for each node 2 will be added as per above analysis hence at most 2*N will be added to the euler vector so total euler vector size should not increase 3*N

hope it is correct tell me if I am wrong somewhere `

»
4 года назад, # |
  Проголосовать: нравится +6 Проголосовать: не нравится

If by "euler walk" you're referring to the Eulerian path/cycle in a general graph, then the length of that is exactly the number of edges in the graph. If you're talking about the Euler tour of a tree, then the number of vertices in the tour is exactly $$$2|V|-1$$$.

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится +6 Проголосовать: не нравится

    can you tell me how it would be exactly 2v-1 ?

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится +6 Проголосовать: не нравится

      There are $$$|V|-1$$$ edges, and we traverse each of them twice. Once going down, and once going back up. So that's a total of $$$2|V|-2$$$ edge traversals. We start out with the root vertex and each time we traverse an edge we add a new vertex, so total is $$$2|V|-1$$$.