Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ACM-ICPC mode for virtual contests.
If you've seen these problems, a virtual contest is not for you - solve these problems in the archive.
If you just want to solve some problem from a contest, a virtual contest is not for you - solve this problem in the archive.
Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

No tag edit access

G. Sources and Sinks

time limit per test

7 secondsmemory limit per test

512 megabytesinput

standard inputoutput

standard outputYou are given an acyclic directed graph, consisting of $$$n$$$ vertices and $$$m$$$ edges. The graph contains no multiple edges and no self-loops.

The vertex is called a source if it has no incoming edges. The vertex is called a sink if it has no outgoing edges. These definitions imply that some vertices can be both source and sink.

The number of sources in the given graph is equal to the number of sinks in it, and each of these numbers doesn't exceed $$$20$$$.

The following algorithm is applied to the graph:

- if the graph has no sources and sinks then quit;
- choose arbitrary source $$$s$$$, arbitrary sink $$$t$$$, add an edge from $$$t$$$ to $$$s$$$ to the graph and go to step $$$1$$$ (that operation pops $$$s$$$ out of sources and $$$t$$$ out of sinks). Note that $$$s$$$ and $$$t$$$ may be the same vertex, then a self-loop is added.

At the end you check if the graph becomes strongly connected (that is, any vertex is reachable from any other vertex).

Your task is to check that the graph becomes strongly connected no matter the choice of sources and sinks on the second step of the algorithm.

Input

The first line contains two integers $$$n$$$ and $$$m$$$ ($$$1 \le n, m \le 10^6$$$) — the number of vertices and the number of edges in the graph, respectively.

Each of the next $$$m$$$ lines contains two integers $$$v_i, u_i$$$ ($$$1 \le v_i, u_i \le n$$$, $$$v_i \ne u_i$$$) — the description of the $$$i$$$-th edge of the original graph.

It is guaranteed that the number of sources and the number of sinks in the graph are the same and they don't exceed $$$20$$$. It is guaranteed that the given graph contains no multiple edges. It is guaranteed that the graph contains no cycles.

Output

Print "YES" if the graph becomes strongly connected no matter the choice of sources and sinks on the second step of the algorithm. Otherwise print "NO".

Examples

Input

3 1

1 2

Output

NO

Input

3 3

1 2

1 3

2 3

Output

YES

Input

4 4

1 2

1 3

4 2

4 3

Output

YES

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Mar/20/2019 07:08:46 (d3).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|