Блог пользователя _LNHTD_

Автор _LNHTD_, история, 5 лет назад, По-английски

The problem is : We are given perimeter (P) of a triangle. We need to find the number of triplet edges (a, b, c) of a triangle, so that three edges are all integer, the area and the length of the radius of the incircle and circumcircle is also an integer.

In the solution, they have an observation that : In order to exist at least a triplet satisfy the problem, 4 must be a divisor of P (perimeter) and a, b, c (three edges) must be all even.

I have proofed all a, b, c are even. But I can't figure out how 4 is a divisor of P.

Could someone help me to proof this ? Thanks in advance!!

  • Проголосовать: нравится
  • +21
  • Проголосовать: не нравится

»
5 лет назад, # |
  Проголосовать: нравится +2 Проголосовать: не нравится

Very interesting! I need a proof too! Thanks ! <3 <3

»
5 лет назад, # |
Rev. 24   Проголосовать: нравится +6 Проголосовать: не нравится

Edit: Successfully hacked by _LNHTD_

I keep this comment just in case I have some new ideas to prove it.

Given $$$P, r, R, k, x, y, z$$$ are integer, $$$a = 2x, b = 2y, c = 2z$$$, prove that $$$p = x + y + z$$$ is even.

$$$P$$$ is the perimeter of the triangle, $$$r$$$ is the radius of the incircle, $$$R$$$ is the radius of the circumcircle, $$$k$$$ is the area of the triangle, $$$a, b, c$$$ are the length of the edges, $$$p$$$ is the semiperimeter.

We have:

$$$k = pr \Rightarrow r = \frac{k}{p} = \frac{\sqrt{p(p-a)(p-b)(p-c)}}{p}$$$ and is an integer.

$$$r^2 = \frac{(p-a)(p-b)(p-c)}{p}$$$ is an integer.

$$$r^2 = \frac{(p-2x)(p-2y)(p-2z)}{p}$$$ is an integer.

Suppose that $$$p$$$ is odd.

We have

$$$r^2 = \frac{(p - 2 x) (p - 2 y)p}{p} - \frac{2z (p - 2 x) (p - 2 y) }{p} = (p-2x)(p-2y) - \frac{2z (p - 2 x) (p - 2 y) }{p}$$$

But since $$$p$$$ is odd, $$$\frac{2z(p - 2 x) (p - 2 y)}{p}$$$ is not an integer $$$\Rightarrow r^2$$$ is not an integer (contradiction).

Therefore, $$$p$$$ must be even $$$\Rightarrow$$$ $$$P$$$ is divisible by 4.

  • »
    »
    5 лет назад, # ^ |
      Проголосовать: нравится +9 Проголосовать: не нравится

    Thanks but how to ensure that $$$2z(p-2x)(p-2y)$$$ can't be divided by $$$p$$$?

    • »
      »
      »
      5 лет назад, # ^ |
      Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

      Thank you for pointing out that flaw. I thought even cannot be divided by odd, which is clearly not true.

»
5 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

How did you prove that all $$$a, b, c$$$ are even?

»
5 лет назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится
Hint
  • »
    »
    5 лет назад, # ^ |
      Проголосовать: нравится +3 Проголосовать: не нравится

    Actually I have thought a lot about those formulas. But still ended up stucked :<. Could you show us more hints or something like that? Thanks a lot.

  • »
    »
    5 лет назад, # ^ |
    Rev. 2   Проголосовать: нравится +1 Проголосовать: не нравится

    I just can prove that 'a' must divide 8 and the area must be an even number.But I don't know if it was efficient:< (trying to prove that the case having one edge is even and the 2 others are odd, and 'a' is the even one)

  • »
    »
    5 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Can u send me your proof :< It takes me my whole yesterday evening

  • »
    »
    5 лет назад, # ^ |
      Проголосовать: нравится +3 Проголосовать: не нравится

    Could you help us :< ?

    • »
      »
      »
      5 лет назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится
      s is an integer

      If $$$s$$$ is even then we're done, otherwise let's consider the case when $$$s$$$ is odd.

      all of a, b, c can't be even
      a can't be even if both b and c are odd