Can someone tell me how to solve this problem ALIENINV

Thanks!

# | User | Rating |
---|---|---|

1 | tourist | 3557 |

2 | Radewoosh | 3468 |

3 | Um_nik | 3429 |

4 | Petr | 3354 |

5 | Benq | 3286 |

6 | mnbvmar | 3280 |

7 | wxhtxdy | 3276 |

7 | LHiC | 3276 |

9 | ecnerwala | 3214 |

10 | yutaka1999 | 3190 |

# | User | Contrib. |
---|---|---|

1 | Errichto | 191 |

2 | Radewoosh | 180 |

3 | tourist | 173 |

4 | Vovuh | 165 |

4 | antontrygubO_o | 165 |

4 | PikMike | 165 |

7 | rng_58 | 160 |

8 | Um_nik | 156 |

8 | majk | 156 |

10 | 300iq | 155 |

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Oct/20/2019 02:51:14 (f1).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|

When you ask for help with a problem, say what you already came up with (more instructions here).

A good first step might be to compute the answer for every leaf. Take a leaf $$$L$$$ and root the tree there. For every other vertex $$$V$$$, it will be removed before $$$L$$$ if and only if the whole subtree of $$$V$$$ has values smaller than the value in $$$L$$$. Let $$$s[V]$$$ be the size of the subtree of $$$V$$$. Then, we want $$$L$$$ to have the smallest value among $$$s[V]+1$$$ vertices (that subtree and vertex $$$L$$$ itself), so the probability of $$$L$$$ being the smallest is $$$\frac{1}{s[V]+1}$$$. Since this is the probability of $$$V$$$ being before $$$L$$$, you can sum this up to get the expected value of the place of $$$L$$$ — because with that probability the place of $$$L$$$ is increased by $$$1$$$.

This is $$$O(N)$$$ solution to find an answer for a single leaf. I don't know how hard it is to apply it for non-leaf vertices. Try it and let us know.

Thanks a lot for your help. I'll keep in mind about the instructions next time. And do you mean $$$L$$$ should have the largest value than the whole subtree of $$$V$$$? or am I missing something?

Thanks!

Yup, the largest.