Can someone tell me how to solve this problem ALIENINV

Thanks!

# | User | Rating |
---|---|---|

1 | tourist | 3686 |

2 | mnbvmar | 3509 |

3 | Benq | 3339 |

4 | LHiC | 3330 |

5 | wxhtxdy | 3329 |

6 | sunset | 3279 |

7 | Petr | 3275 |

7 | V--o_o--V | 3275 |

9 | yutaka1999 | 3190 |

10 | ecnerwala | 3153 |

# | User | Contrib. |
---|---|---|

1 | Errichto | 190 |

2 | Radewoosh | 189 |

3 | rng_58 | 165 |

4 | PikMike | 160 |

5 | Vovuh | 158 |

6 | Petr | 155 |

7 | 300iq | 154 |

8 | majk | 149 |

9 | Um_nik | 148 |

10 | Swistakk | 144 |

Codeforces (c) Copyright 2010-2019 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Jun/19/2019 07:09:12 (f3).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|

When you ask for help with a problem, say what you already came up with (more instructions here).

A good first step might be to compute the answer for every leaf. Take a leaf $$$L$$$ and root the tree there. For every other vertex $$$V$$$, it will be removed before $$$L$$$ if and only if the whole subtree of $$$V$$$ has values smaller than the value in $$$L$$$. Let $$$s[V]$$$ be the size of the subtree of $$$V$$$. Then, we want $$$L$$$ to have the smallest value among $$$s[V]+1$$$ vertices (that subtree and vertex $$$L$$$ itself), so the probability of $$$L$$$ being the smallest is $$$\frac{1}{s[V]+1}$$$. Since this is the probability of $$$V$$$ being before $$$L$$$, you can sum this up to get the expected value of the place of $$$L$$$ — because with that probability the place of $$$L$$$ is increased by $$$1$$$.

This is $$$O(N)$$$ solution to find an answer for a single leaf. I don't know how hard it is to apply it for non-leaf vertices. Try it and let us know.

Thanks a lot for your help. I'll keep in mind about the instructions next time. And do you mean $$$L$$$ should have the largest value than the whole subtree of $$$V$$$? or am I missing something?

Thanks!

Yup, the largest.