Given A, B, C, D. Find $$$\sum\limits_{i = A}^B \sum\limits_{j = C}^D i⊕j$$$

Constraints:

1 <= A <= B <= $$$10^9$$$

1 <= C <= D <= $$$10^9$$$

How to approach this, any suggestion will be helpful?

# | User | Rating |
---|---|---|

1 | tourist | 3843 |

2 | jiangly | 3705 |

3 | Benq | 3628 |

4 | orzdevinwang | 3571 |

5 | Geothermal | 3569 |

5 | cnnfls_csy | 3569 |

7 | jqdai0815 | 3530 |

8 | ecnerwala | 3499 |

9 | gyh20 | 3447 |

10 | Rebelz | 3409 |

# | User | Contrib. |
---|---|---|

1 | maomao90 | 171 |

2 | awoo | 164 |

3 | adamant | 162 |

4 | TheScrasse | 159 |

5 | maroonrk | 154 |

5 | nor | 154 |

7 | -is-this-fft- | 152 |

8 | Petr | 147 |

9 | orz | 145 |

10 | pajenegod | 144 |

Given A, B, C, D. Find $$$\sum\limits_{i = A}^B \sum\limits_{j = C}^D i⊕j$$$

Constraints:

1 <= A <= B <= $$$10^9$$$

1 <= C <= D <= $$$10^9$$$

How to approach this, any suggestion will be helpful?

↑

↓

Codeforces (c) Copyright 2010-2024 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Jun/13/2024 07:23:36 (k2).

Desktop version, switch to mobile version.

Supported by

User lists

Name |
---|

Use these

Here is my idea —

SpoilerTo calculate count of numbers upto N, whose Kth bit is set, use this — Link. You can easily extend this idea for a range.