hi, i think all of divisors of n(1 to 10^18) with in 9 sec is quit immpossible. if any idea or solution.please share it :) thank you

# | User | Rating |
---|---|---|

1 | tourist | 3496 |

2 | W4yneb0t | 3218 |

3 | TakanashiRikka | 3178 |

4 | Petr | 3173 |

5 | moejy0viiiiiv | 3158 |

6 | LHiC | 3113 |

7 | izrak | 3109 |

8 | anta | 3106 |

9 | ershov.stanislav | 3105 |

10 | cubelover | 3071 |

# | User | Contrib. |
---|---|---|

1 | rng_58 | 178 |

2 | csacademy | 171 |

2 | tourist | 171 |

4 | Petr | 162 |

5 | Swistakk | 161 |

6 | Errichto | 156 |

7 | Zlobober | 150 |

8 | matthew99 | 145 |

9 | Endagorion | 142 |

10 | zscoder | 134 |

hi, i think all of divisors of n(1 to 10^18) with in 9 sec is quit immpossible. if any idea or solution.please share it :) thank you

↑

↓

Codeforces (c) Copyright 2010-2017 Mike Mirzayanov

The only programming contests Web 2.0 platform

Server time: Oct/20/2017 02:45:31 (c3).

Desktop version, switch to mobile version.

User lists

Name |
---|

Iterating from 1 to sqrt(n) and using divisor pairs will give you the answer. In 9 secs, I think you can do 10^9 operations, even with the constant of the modulo operation.

Good day to you,

well firstly you can start with "Pollard Rho" (you will also need something like miller-rabin), which could factorize the number in O(N^(1/4)) [it is somehow long coding with many possible mistakes, but the core is not that bad].

As you have it, you can generate all divisors by "simple recursion" in O(#NUMBER_OF_DIVISORS)

Hope I guessed rightly what you asked for ^_^

Good Luck & Have nice day!!

thanks i got it...yeah there have some mistake.. for large number it's quite impossible there is no exact solution for this ques with 9 sec :) thank you :)

Well imho there is something more exact, but this is a lesser pain ^_^

Also the probability is "soo big" you can treat is as exact :)

Have nice day ^_^